function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
predictions = 1./(1.+exp(-X*theta));
J = (-y'*log(predictions)-(1.-y')*log(1.-predictions))/m;
reglutheta = theta(2:size(theta,1),1
吴恩达的机器学习编程作业6:costFunctionReg正则化代价函数
最新推荐文章于 2024-05-03 11:58:37 发布
该代码实现了带有正则化的逻辑回归代价函数计算,包括梯度计算。通过预测值与实际值的比较,计算代价,并应用拉普拉斯正则化项。最终返回代价J和梯度grad。

最低0.47元/天 解锁文章
355

被折叠的 条评论
为什么被折叠?



