微软亚研院2015的一篇文章,优点是能够满足任意大小图像的输入。
主要思想:
(1)Spatial Pyramid Pooling Layer. 正是因为该层,才让Spp_net能够实现任意图片的输入,并且得到固定长度的特征向量:
stride和window的计算:
(2)Mapping a Window to Feature Maps. 将原图输入Spp_net后,通过下面图片中介绍的方法,能够将原图中的点映射到feature map上,为object detection打下基础:
主要代码实现(基于theano/keras):
(1)spp_layer:
class SppLayer(Layer):
def __init__(self,bins,feature_map_size=0):
super(SppLayer,self).__init__()
self.strides = []
self.windows = []
self.a = feature_map_size#feature_map size
self.bins = bins
self.num_bins = len(bins)
def get_output(self,train):
self.input = self.get_input(train)
for i in range(self.num_bins):
self.strides.append(int(math.floor(self.a/self.bins[i])))
self.windows.append(int(math.ceil(self.a/self.bins[i])))
self.pooled_out = []
for j in range(self.num_bins):
self.pooled_out.append(downsample.max_pool_2d(input=self.input,
ds=(self.windows[j],self.windows[j]),
st=(self.strides[j],self.strides[j]),
ignore_border=False))
for k in range(self.num_bins):
self.pooled_out[k] = self.pooled_out[k].flatten(2)
"""
print self.windows[k]
print self.strides[k]
print 'K: '+str(k)
"""
# batch_size * image_size
self.output = T.concatenate([self.pooled_out[0],self.pooled_out[1],self.pooled_out[2]],axis=1)
return self.output
(2)Mapping a Window to Feature Maps:
def window_to_feature_map(window_point_x1,window_point_y1,window_point_x2,window_point_y2,
window_size_x,window_size_y,map_size_x,map_size_y):
map_point_x1 = window_point_x1*math.ceil(map_size_x/window_size_x)-1
map_point_y1 = window_point_y1*math.ceil(map_size_y/window_size_y)-1
map_point_x2 = window_point_x2*math.ceil(map_size_x/window_size_x)-1
map_point_y2 = window_point_y2*math.ceil(map_size_y/window_size_y)-1
return map_point_x1,map_point_y1,map_point_x2,map_point_y2