[重磅][ZJOI]XYL算法

本文介绍了一个使用匈牙利算法解决矩阵游戏中特定问题的方法。该问题是通过一系列行和列的交换操作,使得N*N的黑白矩阵主对角线上的元素全部变为黑色。文章提供了完整的AC代码实现,并对输入输出格式及样例进行了详细说明。

洛谷笑话
某神犇:成为了蒟蒻,以后还要继续努力!
管理员:发表虚假言论,警告一次!

颓了一暑假,开学要军训了QAQ
我暑假里学了什么呢?

回到正题,匈牙利算法!

题目描述

小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏。矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:

行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色)

列交换操作:选择矩阵的任意两列,交换这两列(即交换对应格子的颜色)

游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑色。

对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程序来判断这些关卡是否有解。

输入输出格式

输入格式:
第一行包含一个整数T,表示数据的组数。

接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。

输出格式:
包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。

输入输出样例

输入样例#1:
2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
输出样例#1:
No
Yes
说明

对于20%的数据,N ≤ 7

对于50%的数据,N ≤ 50

对于100%的数据,N ≤ 200

分析

我们发现,一行或一列的黑棋子个数没有改变
所以每行每列必须有一个黑棋子
然后要使主对角线上有n颗黑棋子
就要有n颗行列都不相同的黑棋子(不能多于n,因为只有n行n列)
另外为了节省时间
时间戳t=i+(T-1)*200;
记得初始化

AC代码

#include<cstdio>
#include<iostream>
#include<cstring>
#define N 210
using namespace std;
int n,T,t,p,ans,num,h[N],a[N],c[N];
struct Edge{
    int p,q,n;
}b[N*N];
void ljb(int p,int q){
    b[++num].n=h[p];
    h[p]=num;
    b[num].p=p;
    b[num].q=q;
}
bool dfs(int x){
    for(int i=h[x];i!=0;i=b[i].n){
        if(a[b[i].q]!=t){
            a[b[i].q]=t;
            if(!c[b[i].q]||dfs(c[b[i].q])){
                c[b[i].q]=x;
                return 1;
            }
        }
    }
    return 0;
}
int main(){
    freopen("data.txt","r",stdin);
    scanf("%d",&T);
    while(T--){
        memset(c,0,sizeof(c));
        memset(h,0,sizeof(h));
        num=ans=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++){
                scanf("%d",&p);
                if(p)ljb(i,j);
            }
        for(int i=1;i<=n;i++){
            t=i+(T-1)*200;
            if(dfs(i))ans++;
        }
        if(ans!=n)printf("No\n");
        else printf("Yes\n");
    }
}
【SCI复现】含可再生能源与储能的区域微电网最优运行:应对不确定性的解鲁棒性与非预见性研究(Matlab代码实现)内容概要:本文围绕含可再生能源与储能的区域微电网最优运行展开研究,重点探讨应对不确定性的解鲁棒性与非预见性策略,通过Matlab代码实现SCI论文复现。研究涵盖多阶段鲁棒调度模型、机会约束规划、需求响应机制及储能系统优化配置,结合风电、光伏等可再生能源出力的不确定性建模,提出兼顾系统经济性与鲁棒性的优化运行方案。文中详细展示了模型构建、算法设计(如C&CG算法、大M法)及仿真验证全过程,适用于微电网能量管理、电力系统优化调度等领域的科研与工程实践。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事微电网、能源管理相关工作的工程技术人员。; 使用场景及目标:①复现SCI级微电网鲁棒优化研究成果,掌握应对风光负荷不确定性的建模与求解方法;②深入理解两阶段鲁棒优化、分布鲁棒优化、机会约束规划等先进优化方法在能源系统中的实际应用;③为撰写高水平学术论文或开展相关课题研究提供代码参考和技术支持。; 阅读建议:建议读者结合文档提供的Matlab代码逐模块学习,重点关注不确定性建模、鲁棒优化模型构建与求解流程,并尝试在不同场景下调试与扩展代码,以深化对微电网优化运行机制的理解。
个人防护装备实例分割数据集 一、基础信息 数据集名称:个人防护装备实例分割数据集 图片数量: 训练集:4,524张图片 分类类别: - Gloves(手套):工作人员佩戴的手部防护装备。 - Helmet(安全帽):头部防护装备。 - No-Gloves(未戴手套):未佩戴手部防护的状态。 - No-Helmet(未戴安全帽):未佩戴头部防护的状态。 - No-Shoes(未穿安全鞋):未佩戴足部防护的状态。 - No-Vest(未穿安全背心):未佩戴身体防护的状态。 - Shoes(安全鞋):足部防护装备。 - Vest(安全背心):身体防护装备。 标注格式:YOLO格式,包含实例分割的多边形坐标和类别标签,适用于实例分割任务。 数据格式:来源于实际场景图像,适用于计算机视觉模型训练。 二、适用场景 工作场所安全监控系统开发:数据集支持实例分割任务,帮助构建能够自动识别工作人员个人防护装备穿戴状态的AI模型,提升工作环境安全性。 建筑与工业安全检查:集成至监控系统,实时检测PPE穿戴情况,预防安全事故,确保合规性。 学术研究与创新:支持计算机视觉在职业安全领域的应用研究,促进AI与安全工程的结合。 培训与教育:可用于安全培训课程,演示PPE识别技术,增强员工安全意识。 三、数据集优势 精准标注与多样性:每个实例均用多边形精确标注,确保分割边界准确;覆盖多种PPE物品及未穿戴状态,增加模型鲁棒性。 场景丰富:数据来源于多样环境,提升模型在不同场景下的泛化能力。 任务适配性强:标注兼容主流深度学习框架(如YOLO),可直接用于实例分割模型开发,支持目标检测和分割任务。 实用价值高:专注于工作场所安全,为自动化的PPE检测提供可靠数据支撑,有助于减少工伤事故。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值