pytesseract 中英文 识别图片文字

要使用 pytesseract 识别图片文字,你需要先安装 Tesseract OCR引擎 和 Pillow库,然后通过几行 Python 代码导入库、加载图片,并调用 image_to_string() 函数进行识别,传入图片路径和指定语言 (如 ‘eng’ 或 ‘chi_sim’) 即可获得文本内容。

步骤 1: 安装 Tesseract OCR引擎

这是核心部分,需要安装在你的操作系统上,而不是Python库里。
Windows/macOS: 前往 Tesseract-OCR GitHub Releases页面 (或其他官方源) 下载并安装对应版本。
Linux (Debian/Ubuntu): 运行:

sudo apt install tesseract-ocr

安装语言包: 如果需要识别中文,同时安装中文语言包,例如在Linux上是:

sudo apt install tesseract-ocr-chi-sim
# 或 centos
sudo yum install tesseract-ocr-chi-sim

步骤 2: 安装 Python库

安装 Pillow (PIL): pip install Pillow

pip install Pillow

安装 pytesseract: pip install pytesseract

pip install pytesseract

步骤 3: 编写 Python代码

import pytesseract
from PIL import Image

# ----------------------------------------------------------
# Windows用户: 如果Tesseract不在系统PATH中,需要指定其路径
# 例如: pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
# ----------------------------------------------------------

def ocr_image_to_text(image_path, language='eng'):
    """
    使用 pytesseract 从图片中提取文字。
    :param image_path: 图片文件路径
    :param language: 识别的语言 (如 'eng' 英文, 'chi_sim' 简体中文)
    :return: 识别出的文字
    """
    try:
        # 1. 使用Pillow打开图片
        img = Image.open(image_path)

        # 2. 使用pytesseract进行OCR识别
        
        # 设置环境变量(只在当前会话中有效)
    		  pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'  # 示例路径
        pytesseract.pytesseract.tessdata_dir_config = r'C:\Program Files\Tesseract-OCR\tessdata'  # 示例路径
      # lang参数指定语言包
      # 或者在调用时直接指定
      text = pytesseract.image_to_string(Image.open(image_path), lang=language, config="C:\Program Files\Tesseract-OCR\\tessdata"))

        return text
    except FileNotFoundError:
        return f"错误: 找不到文件 {image_path}"
    except Exception as e:
        return f"识别时发生错误: {e}"

# --- 示例用法 ---
if __name__ == '__main__':
    # 假设你的图片名为 'example.png' 且在同一目录下
    # 并且安装了中文语言包 'chi_sim'
    image_file = 'example.png' # <-- 替换成你的图片路径

    # 识别英文
    english_text = ocr_image_to_text(image_file, language='eng')
    print("--- 英文识别结果 ---")
    print(english_text)

    # 识别简体中文 (需要安装 'chi_sim' 语言包)
    chinese_text = ocr_image_to_text(image_file, language='chi_sim')
    print("\n--- 中文识别结果 ---")
    print(chinese_text)

    # 如果是混合语言,可以尝试 'eng+chi_sim'
    mixed_text = ocr_image_to_text(image_file, language='eng+chi_sim')
    print("\n--- 混合语言识别结果 ---")
    print(mixed_text)

步骤 4、报错提示找不到chi_sim语言

请下载:https://github.com/tesseract-ocr/tessdata,把 chi_sim.traineddata 下载后的文件放在 C:\Program Files\Tesseract-OCR\tessdata 文件夹下面。然后运行完整代码,可正常识别中文文字。

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laravel技术社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值