Matlab代码帮做代编Simulink建模Python电气控制通信图像信号处理

以下是为路径规划、选址优化问题提供的Matlab和Python代码示例,涵盖遗传算法(GA)、粒子群优化(PSO)和蚁群算法(ACO)的实现:


1. 遗传算法(GA)路径规划(Matlab)

场景:解决TSP(旅行商问题)

 

matlab

% 遗传算法参数设置
numCities = 20;
popSize = 100;
maxGen = 500;
mutationRate = 0.02;
% 初始化城市坐标(随机生成)
cities = rand(numCities, 2) * 100;
% 定义适应度函数(路径长度倒数)
fitnessFcn = @(x) 1 / pathLength(x, cities);
% 运行遗传算法
options = optimoptions('ga', 'PopulationSize', popSize, 'MaxGenerations', maxGen, 'MutationFcn', @mutationAdaptive);
[bestRoute, ~] = ga(fitnessFcn, numCities, [], [], [], [], 1, numCities, [], options);
% 绘制结果
plot(cities(:,1), cities(:,2), 'o');
hold on;
plot(cities([bestRoute, bestRoute(1)],1), cities([bestRoute, bestRoute(1)],2), '-r');
title('GA路径规划结果');
% 路径长度计算函数
function len = pathLength(route, cities)
len = 0;
for i = 1:length(route)-1
len = len + norm(cities(route(i),:) - cities(route(i+1),:));
end
end

2. 粒子群优化(PSO)选址优化(Python)

场景:优化仓库位置以最小化运输成本

 

python

import numpy as np
import matplotlib.pyplot as plt
# 参数设置
num_particles = 30
max_iter = 100
demand_points = np.random.rand(10, 2) * 100 # 需求点坐标
# PSO初始化
particles = np.random.rand(num_particles, 2) * 100
velocities = np.random.rand(num_particles, 2) * 0.1
pbest = particles.copy()
gbest = particles[np.argmin([cost(p, demand_points) for p in particles])]
# 迭代优化
for _ in range(max_iter):
for i in range(num_particles):
# 更新速度和位置
velocities[i] = 0.5 * velocities[i] + 0.8 * np.random.rand(2) * (pbest[i] - particles[i]) + 0.2 * np.random.rand(2) * (gbest - particles[i])
particles[i] += velocities[i]
# 更新个体最优和全局最优
if cost(particles[i], demand_points) < cost(pbest[i], demand_points):
pbest[i] = particles[i]
if cost(particles[i], demand_points) < cost(gbest, demand_points):
gbest = particles[i]
# 成本函数(欧氏距离总和)
def cost(warehouse, points):
return np.sum(np.sqrt(np.sum((points - warehouse)**2, axis=1)))
# 可视化
plt.scatter(demand_points[:,0], demand_points[:,1], c='red', label='需求点')
plt.scatter(gbest[0], gbest[1], c='blue', marker='*', s=200, label='最优仓库位置')
plt.legend(); plt.show()

3. 蚁群算法(ACO)路径规划(Python)

场景:解决TSP问题

 

python

import numpy as np
# 参数设置
num_ants = 20
num_iterations = 100
alpha = 1.0 # 信息素重要程度
beta = 2.0 # 启发式信息重要程度
evaporation = 0.5
# 初始化信息素矩阵
cities = np.random.rand(20, 2) * 100
distance_matrix = np.sqrt(np.sum((cities[:, np.newaxis] - cities)**2, axis=2))
pheromone = np.ones_like(distance_matrix)
# ACO主循环
for _ in range(num_iterations):
paths = []
for _ in range(num_ants):
path = [0] # 起点
unvisited = set(range(1, len(cities)))
while unvisited:
current = path[-1]
probs = []
for city in unvisited:
heuristic = 1 / distance_matrix[current, city]
prob = (pheromone[current, city]**alpha) * (heuristic**beta)
probs.append(prob)
probs = np.array(probs) / sum(probs)
next_city = np.random.choice(list(unvisited), p=probs)
path.append(next_city)
unvisited.remove(next_city)
paths.append(path)
# 更新信息素
pheromone *= evaporation
for path in paths:
path_length = sum(distance_matrix[path[i], path[i+1]] for i in range(len(path)-1))
for i in range(len(path)-1):
pheromone[path[i], path[i+1]] += 1 / path_length
# 输出最优路径
best_path = min(paths, key=lambda x: sum(distance_matrix[x[i], x[i+1]] for i in range(len(x)-1)))
print("最优路径:", best_path)

关键说明

  1. 算法选择
    • GA:适合离散问题(如TSP),全局搜索能力强。
    • PSO:适合连续空间优化(如选址),收敛速度快。
    • ACO:适合动态路径问题,依赖信息素更新机制。
  2. 扩展建议
    • 添加约束条件(如容量限制、障碍物避障)。
    • 使用更高效的数据结构(如邻接矩阵)加速距离计算。
  3. 工具库推荐
    • Python:DEAP(GA)、PySwarms(PSO)
    • Matlab:Global Optimization Toolbox(内置GA和PSO)

如需特定场景的完整实现(如多仓库选址或动态路径规划),可进一步说明需求! 🐜🌍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值