个人笔记Resnet残差网络

本文探讨了ResNet残差网络的设计理念,它借鉴了XGBOOST集成算法的思想,通过拟合网络残差来增强梯度传播,降低损失函数。这种策略类似于GBDT中的梯度提升过程,每轮迭代都是为了拟合损失函数在当前模型下的负梯度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Resnet残差网络:残差网络本质一种XGBOOST集成算法思想,让残差模块拟合网络残差,以此获得梯度增益效果,降低目标函数的值。《让损失函数沿着梯度方向的下降。这个就是gbdt 的 gb的核心了。 利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值去拟合一个回归树。gbdt 每轮迭代的时候,都去拟合损失函数在当前模型下的负梯度》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV_er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值