基于遗传算法的二进制图像重建附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

图像质量的优劣对人类视觉和各种计算机视觉系统都十分重要,因此图像复原一直是数字图像处理的重要研究内容。作为图像复原的一个分支,超分辨率图像重建问题得到人们越来越多的关注。在视频监控、卫星成像和医学诊断等应用中,由于物理条件的限制,人们获得的图像分辨率较低,无法满足实际需要。超分辨率图像重建技术就是利用这些低分辨率图像序列中各帧图像之间的冗余信息,重构出高分辨率图像。 提出了一种基于遗传算法的图象重建算法,该算法通过构造合适的基因编码方案及个体适应度评价函数,并对遗传算法进行优化,克服了Kuba算法和谷士文AI算法的缺陷,可以成功地解决由带有噪声的二维正交投影重建二维图象的问题,并简化了约束条件.实验结果表明该算法是成功有效的.

⛄ 部分代码

% main 

clear

clc

close all

fileName = 'IMG1.jpg'

IMG_REF_BINARY = PreparePhoto(fileName);

%% controling paramters of the GA algortihm

Problem.obj = @FitnessFunction;

Problem.nVar =  size(IMG_REF_BINARY,1) *  size(IMG_REF_BINARY,2);

M = 30; % number of chromosomes (cadinate solutions)

N = Problem.nVar;  % number of genes (variables)

MaxGen = 1000;

Pc = 0.95

Pm = 0.001;

Er = 0.2;

visualization = 1; % set to 0 if you do not want the convergence curve 

figure

subplot(1,2,1)

imshow(IMG_REF_BINARY)

title('Original image')

[BestChrom]  = GeneticAlgorithm (M , N, MaxGen , Pc, Pm , Er , Problem.obj , visualization )

disp('The best chromosome found: ')

BestChrom.Gene

disp('The best fitness value: ')

BestChrom.Fitness

⛄ 运行结果

⛄ 参考文献

[1]伍晓平, 谷士文, 费耀平,等. 基于遗传算法的图象重建算法[J]. 计算技术与自动化, 2000, 19(1):4.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值