【特征提取】基于稀疏PCA实现目标识别信息特征选择附matlab源码

1 简介

Bag-of-words (BoW) methods are a popular class of object recognition methods that use image features (e.g. SIFT) to form visual dictionaries and subsequent histogram vectors to represent object images in the recognition process. The accuracy of the BoW classifiers, however, is often limited by the presence of uninformative features extracted from the background or irrelevant image segments. Most existing solutions to prune out uninformative features rely on enforcing pairwise epipolar geometry via an expensive structure-from- motion (SfM) procedure. Such solutions are known to break down easily when the camera transformation is large or when the features are extracted from low- resolution low-quality images. In this paper, we propose a novel method to select informative object features using a more efficient algorithm called Sparse PCA. First, we show that using a large-scale multiple-view object database, informative features can be reliably identified from a high- dimensional visual dictionary by applying Sparse PCA on the histograms of each object category. Our experiment shows that the new algorithm improves recognition accuracy compared to the traditional BoW methods and SfM methods. Second, we present a new solution to Sparse PCA as a semidefinite programming problem using Augmented Lagrange Multiplier methods. The new solver outperforms the state of the art for estimating sparse principal vectors as a basis for a low-dimensional subspace model. The source code of our algorithms will be made public on our website.​

2 部分代码

clc;T = 5; % Number of trials to average run times overdimensions = [10 50 100 150 200 250 300 350 400 450 500];ALMTimes = zeros(length(dimensions), T);DSPCATimes = zeros(length(dimensions), T);ALMPrec = zeros(length(dimensions), T);DSPCAPrec = zeros(length(dimensions), T);for i = 1:length(dimensions)        % Initialize parameters ****************    n=dimensions(i); p = 1;               % Dimension    ratio=1;         % "Signal to noise" ratio    % rand('state',25);   % Fix random seed    for j = 1:T        % Form test matrix as: rank one sparse + noise        testvec=rand(n,p);        testvec = testvec - ones(n,1)*mean(testvec);        numZero = n - floor(0.1*n);        randInd = randperm(n); randInd1 = randInd(1:numZero); randInd2 = randInd(numZero+1:end);        testvec(randInd1,:) = 0;        testvec=ratio*testvec; % + rand(n,p);        testvec = testvec/norm(testvec);        A = testvec*testvec'/p;        lambda = max(1e-5,min(diag(A))*0.5);%(min(diag(A)) + max(diag(A)))/2;                tstartDSPCA = tic;        [x1, DSPCAIter] = DSPCA(A, lambda);        tstopDSPCA = toc(tstartDSPCA);        DSPCAPrec(i,j) = norm(abs(x1) - abs(testvec));        tstartALM = tic;        [x, ALMIter] = SPCA_ALM(A, lambda);        tstopALM = toc(tstartALM);        ALMPrec(i,j) = norm(abs(x) - abs(testvec));                ALMTimes(i,j) = tstopALM;        DSPCATimes(i,j) = tstopDSPCA;        fprintf('\n [dim,trial] = [%i, %i]: [DSPCA time, SPCA-ALM time] = [%0.4f %0.4f]\t[DSPCA Iter, SPCA-ALM Iter] = [%i, %i]',n, j, tstopDSPCA, tstopALM, DSPCAIter, ALMIter);    end    fprintf('\n');endfprintf('\n');ALMTimes = mean(ALMTimes,2);DSPCATimes = mean(DSPCATimes,2);ALMPrec = mean(ALMPrec,2);DSPCAPrec = mean(DSPCAPrec,2);figurehold onplot(dimensions, DSPCATimes, '-bx', 'linewidth', 2)plot(dimensions, ALMTimes, '-ro', 'linewidth', 2)legend('DSPCA', 'SPCAALM');xlabel('Dimension (n)');ylabel('Compute time (sec)');title('Time comparison of DSPCA and SPCAALM')figurehold onplot(dimensions, DSPCAPrec, '-gx', 'linewidth', 2)plot(dimensions, ALMPrec, '-mo', 'linewidth', 2)legend('DSPCA', 'SPCAALM');xlabel('Dimension (n)');ylabel('Error');title('Precision comparison of DSPCA and SPCAALM')

3 仿真结果

4 参考文献

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值