14.5.2 Simple names

本文详细阐述了C#中简单名称的解析规则及其应用场景,包括局部变量、成员访问及命名空间成员查找的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A simple-name consists of a single identifier.
simple-name:
identifier
A simple-name is evaluated and classified as follows:
?If the simple-name appears within a block and if the block?s (or an
enclosing block?s) local variable
declaration space (?0.3) contains a local variable or parameter with the
given name, then the simplename
refers to that local variable or parameter and is classified as a variable.
?Otherwise, for each type T, starting with the immediately enclosing
class, struct, or enumeration
declaration and continuing with each enclosing outer class or struct
declaration (if any), if a member
lookup of the simple-name in T produces a match:
If T is the immediately enclosing class or struct type and the lookup
identifies one or more methods, the
result is a method group with an associated instance expression of this.
If T is the immediately enclosing class or struct type, if the lookup
identifies an instance member, and if the
reference occurs within the block of an instance constructor, an instance
method, or an instance accessor, the
result is the same as a member access (?4.5.4) of the form this.E, where E
is the simple-name.
Otherwise, the result is the same as a member access (?4.5.4) of the form
T.E, where E is the simple-name.
In this case, it is a compile-time error for the simple-name to refer to an
instance member.
?Otherwise, starting with the namespace in which the simple-name occurs,
continuing with each
enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated
until an entity is located:
If the namespace contains a namespace member with the given name, then the
simple-name refers to that
member and, depending on the member, is classified as a namespace or a type.
Otherwise, if the namespace has a corresponding namespace declaration
enclosing the location where the
simple-name occurs, then:
?If the namespace declaration contains a using-alias-directive that
associates the given name with
an imported namespace or type, then the simple-name refers to that
namespace or type.
?Otherwise, if the namespaces imported by the using-namespace-directives
of the namespace
declaration contain exactly one type with the given name, then the
simple-name refers to that
type.
?Otherwise, if the namespaces imported by the using-namespace-directives
of the namespace
declaration contain more than one type with the given name, then the
simple-name is ambiguous
and a compile-time error occurs.
?Otherwise, the name given by the simple-name is undefined and a
compile-time error occurs.
14.5.2.1 Invariant meaning in blocks
For each occurrence of a given identifier as a simple-name in an expression
or declarator, every other
occurrence of the same identifier as a simple-name in an expression or
declarator within the immediately
Chapter 14 Expressions
139
enclosing block (?5.2) or switch-block (?5.7.2) must refer to the same
entity. [Note: This rule ensures that
the meaning of a name is always the same within a block. end note]
[Example: The example
class Test
{
double x;
void F(bool b) {
x = 1.0;
if (b) {
int x = 1;
}
}
}
results in a compile-time error because x refers to different entities
within the outer block (the extent of
which includes the nested block in the if statement). In contrast, the
example
class Test
{
double x;
void F(bool b) {
if (b) {
x = 1.0;
}
else {
int x = 1;
}
}
}
is permitted because the name x is never used in the outer block. end
example]
[Note: The rule of invariant meaning applies only to simple names. It is
perfectly valid for the same
identifier to have one meaning as a simple name and another meaning as
right operand of a member access
(?4.5.4). end note] [Example: For example:
struct Point
{
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
The example above illustrates a common pattern of using the names of fields
as parameter names in an
instance constructor. In the example, the simple names x and y refer to the
parameters, but that does not
prevent the member access expressions this.x and this.y from accessing the
fields. end example]
内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值