leetcode: Search for a Range

本文介绍了一种算法,该算法可以在已排序的整数数组中找到给定目标值的起始和结束位置。此算法的时间复杂度为O(log n),通过两次二分查找实现:第一次找到目标值的最左侧位置,第二次找到最右侧位置。如果未找到目标值,则返回[-1, -1]。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

class Solution {
public:
    vector<int> searchRange(int A[], int n, int target) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        
        int low  = 0;
        int high = n-1;
        int mid  = (low+high)/2;
        
        int beginPos = -1;
        int endPos   = -1;
        
        vector<int> retVector;

        // first, we want to find the left,
        while (mid < high)
        {
            // here is the main proces
            if (A[mid] >= target)
            {
                high = mid;
            }
            else
            {
                low = mid+1;
            }
            mid = (low+high)/2;
        }
        
        if (A[mid] != target)
        {
            retVector.push_back(beginPos);
            retVector.push_back(endPos);           
            return retVector;
        }
        beginPos = mid;
        
        low  = 0;
        high = n-1;
        mid  = (low+high)/2;
        
        while (mid > low)
        { 
            if (A[mid] <= target)
            {
                low = mid;
            }
            else
            {
                high = mid-1;
            }
            mid = (low+high)/2;
        }
        
        if (A[high] == target)
        {
            endPos = high;
        }
        else
        {
            endPos = mid;
        }
        
        retVector.push_back(beginPos);
        retVector.push_back(endPos);
        
        return retVector;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值