Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
For example,
Given:
s1 = "aabcc"
,
s2 = "dbbca"
,
When s3 = "aadbbcbcac"
,
return true.
When s3 = "aadbbbaccc"
,
return false.
这道题是我解决最有满足感的一到,到目前为止
开始的时候,从一维空间想,有点类似 贪心算法+回溯法的思想,看着简单,但是很多回溯是致错误的,然后加了很多if else,感觉这样的解法不应该是正确的
后来对问题抽象了一下,假设当前 s1的前n和元素和s2的前m个元素是满足interleaving了,那就可以判断s1[n+1]和s2[m]是不是满足 interleaving的条件,同时也可以判断s1[n]s2[m+1]是不是满足条件,这样采用动态规划的思想,最后可以判断出s1.size()s2.size()是不是可以满足条件
#define MAX_SIZE 101
class Solution {
bool table[MAX_SIZE][MAX_SIZE];
public:
bool isInterleave(string s1, string s2, string s3) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (s1.size()+s2.size() != s3.size())
return false;
for (int i = 0; i< MAX_SIZE; i++)
{
for (int j = 0; j < MAX_SIZE; j++)
{
table[i][j] = false;
}
}
table[0][0] = true;
for (int i = 0; i < s1.size(); i++)
{
if (s1[i] == s3[i])
{
table[0][i+1] = true;
}
}
for (int j = 0; j < s2.size(); j++)
{
if (s2[j] == s3[j])
{
table[j+1][0] = true;
}
}
for (int i = 1; i <= s2.size(); i++)
{
for (int j = 1; j <= s1.size(); j++)
{
if (table[i-1][j] == true)
{
if (s3[i+j-1] == s2[i-1])
{
table[i][j] = true;
continue;
}
}
if (table[i][j-1] == true)
{
if (s3[i+j-1] == s1[j-1])
{
table[i][j] = true;
continue;
}
}
}
}
return table[s2.size()][s1.size()];
}
};