Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in
as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in
as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
int min(int a, int b)
{
if (a <= b)
return a;
return b;
}
int max(int a, int b)
{
if (a >= b)
return a;
return b;
}
vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) {
vector<Interval> retVtr;
int vtrSize = intervals.size();
if (vtrSize == 0)
{
retVtr.push_back(newInterval);
return retVtr;
}
int idx = 0;
while (idx < vtrSize)
{
if (intervals[idx].end < newInterval.start)
{
retVtr.push_back(intervals[idx]);
idx++;
}
else
{
break;
}
}
int newStart = newInterval.start;
int newEnd = newInterval.end;
while (idx < vtrSize)
{
//overlap
if (intervals[idx].start <= newInterval.end)
{
newStart = min(newStart, intervals[idx].start);
newEnd = max(newEnd, intervals[idx].end);
idx++;
}
else
{
break;
}
}
retVtr.push_back(Interval(newStart, newEnd));
while (idx < vtrSize)
{
retVtr.push_back(intervals[idx]);
idx++;
}
return retVtr;
}
};