Given a rope of length n meters, cut the rope in different parts of integer lengths in a way that maximizes product of lengths of all parts. You must make at least one cut. Assume that the length of rope is more than 2 meters.
Examples:
Input: n = 2 Output: 1 (Maximum obtainable product is 1*1) Input: n = 3 Output: 2 (Maximum obtainable product is 1*2) Input: n = 4 Output: 4 (Maximum obtainable product is 2*2) Input: n = 5 Output: 6 (Maximum obtainable product is 2*3) Input: n = 10 Output: 36 (Maximum obtainable product is 3*3*4)
1) Optimal Substructure:
This problem is similar to Rod Cutting Problem. We can get the maximum product by making a cut at different positions and comparing the values obtained after a cut. We can recursively call the same function for a piece obtained after a cut.
Let maxProd(n) be the maximum product for a rope of length n. maxProd(n) can be written as following.
maxProd(n) = max(i*(n-i), maxProdRec(n-i)*i) for all i in {1, 2, 3 .. n}
2) Overlapping Subproblems
Following is simple recursive C++ implementation of the problem. The implementation simply follows the recursive structure mentioned above.
A Tricky Solution:
If we see some examples of this problems, we can easily observe following pattern.
The maximum product can be obtained be repeatedly cutting parts of size 3 while size is greater than 4, keeping the last part as size of 2 or 3 or 4. For example, n = 10, the maximum product is obtained by 3, 3, 4. For n = 11, the maximum product is obtained by 3, 3, 3, 2. Following is C++ implementation of this approach.
- package DP;
- public class MaxProductCutting {
- public static void main(String[] args) {
- System.out.println(maxProdRec(10));
- System.out.println(maxProdDP(10));
- System.out.println(maxProdTrick(10));
- }
- public static int maxProdRec(int n){
- if(n==0 || n==1){
- return 0;
- }
- int max = 0;
- for(int i=1; i<n; i++){
- // 1.只切一刀 2.切完一刀后,把余下的继续切
- int bigger = Math.max(i*(n-i), i*maxProdRec(n-i));
- max = Math.max(max, bigger);
- }
- return max;
- }
- // Time: O(n^2), space:O(n)
- public static int maxProdDP(int n){
- // maxProd[i]: 总长度为i的绳子能切出的最大乘积
- int[] maxProd = new int[n+1];
- maxProd[0] = maxProd[1] = 0;
- // Build the table maxProd[] in bottom up manner and return
- // the last entry from the table
- for(int i=1; i<=n; i++){ // 总长度为i
- int max = 0;
- for(int j=1; j<=i/2; j++){ // 切长度为j
- int bigger = Math.max(j*(i-j), j*maxProd[i-j]);
- max = Math.max(max, bigger);
- }
- maxProd[i] = max;
- }
- return maxProd[n];
- }
- // 规律:不断以3为单位长度切
- public static int maxProdTrick(int n){
- if(n==2 || n==3){ // n equals to 2 or 3 must be handled explicitly
- return n-1;
- }
- int res = 1;
- while(n > 4){ // Keep removing parts of size 3 while n is greater than 4
- n -= 3;
- res *= 3; // Keep multiplying 3 to res
- }
- return n*res; // The last part multiplied by previous parts
- }
- }

探讨了如何将一定长度的绳子切割成若干整数长度部分,使得各部分长度的乘积最大。介绍了递归求解、动态规划及巧妙解法三种算法,并提供了Java实现。
2428

被折叠的 条评论
为什么被折叠?



