Dynamic Programming | Set 36 (Maximum Product Cutting)

本文探讨如何通过动态规划解决最大化绳子切割后各部分乘积的问题,提供了递归和动态规划两种方法,并介绍了优化思路及实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自出处: http://www.geeksforgeeks.org/dynamic-programming-set-36-cut-a-rope-to-maximize-product/


Given a rope of length n meters, cut the rope in different parts of integer lengths in a way that maximizes product of lengths of all parts. You must make at least one cut. Assume that the length of rope is more than 2 meters.

Examples:

Input: n = 2
Output: 1 (Maximum obtainable product is 1*1)

Input: n = 3
Output: 2 (Maximum obtainable product is 1*2)

Input: n = 4
Output: 4 (Maximum obtainable product is 2*2)

Input: n = 5
Output: 6 (Maximum obtainable product is 2*3)

Input: n = 10
Output: 36 (Maximum obtainable product is 3*3*4)
1) Optimal Substructure: 
This problem is similar to Rod Cutting Problem. We can get the maximum product by making a cut at different positions and comparing the values obtained after a cut. We can recursively call the same function for a piece obtained after a cut.

Let maxProd(n) be the maximum product for a rope of length n. maxProd(n) can be written as following.

maxProd(n) = max(i*(n-i), maxProdRec(n-i)*i) for all i in {1, 2, 3 .. n}

2) Overlapping Subproblems
Following is simple recursive C++ implementation of the problem. The implementation simply follows the recursive structure mentioned above.

// A Naive Recursive method to find maxium product
#include <iostream>
using namespace std;
 
// Utility function to get the maximum of two and three integers
int max(int a, int b) { return (a > b)? a : b;}
int max(int a, int b, int c) { return max(a, max(b, c));}
 
// The main function that returns maximum product obtainable
// from a rope of length n
int maxProd(int n)
{
    // Base cases
    if (n == 0 || n == 1) return 0;
 
    // Make a cut at different places and take the maximum of all
    int max_val = 0;
    for (int i = 1; i < n; i++)
      max_val = max(max_val, i*(n-i), maxProd(n-i)*i);
 
    // Return the maximum of all values
    return max_val;
}
 
/* Driver program to test above functions */
int main()
{
    cout << "Maximum Product is " << maxProd(10);
    return 0;
}
Output:

Maximum Product is 36
Considering the above implementation, following is recursion tree for a Rope of length 5.

mP() ---> maxProd() 

                            mP(5)
                 /        /      \     \
                /        /        \      \
            mP(4)       mP(3)     mP(2)   mP(1)
           /  |  \       /  \       |
          /   |   \     /    \      |  
     mP(3) mP(2) mP(1) mP(2) mP(1) mP(1)
    / \       |          |
   /   \      |          |   
 mP(2) mP(1) mP(1)      mP(1)
In the above partial recursion tree, mP(3) is being solved twice. We can see that there are many subproblems which are solved again and again. Since same suproblems are called again, this problem has Overlapping Subprolems property. So the problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array val[] in bottom up manner.

// A Dynamic Programming solution for Max Product Problem
int maxProd(int n)
{
   int val[n+1];
   val[0] = val[1] = 0;
  
   // Build the table val[] in bottom up manner and return
   // the last entry from the table
   for (int i = 1; i <= n; i++)
   {
      int max_val = 0;
      for (int j = 1; j <= i/2; j++)
         max_val = max(max_val, (i-j)*j, j*val[i-j]);
      val[i] = max_val;
   }
   return val[n];
}
Time Complexity of the Dynamic Programming solution is O(n^2) and it requires O(n) extra space.

A Tricky Solution:
If we see some examples of this problems, we can easily observe following pattern.
The maximum product can be obtained be repeatedly cutting parts of size 3 while size is greater than 4, keeping the last part as size of 2 or 3 or 4. For example, n = 10, the maximum product is obtained by 3, 3, 4. For n = 11, the maximum product is obtained by 3, 3, 3, 2. Following is C++ implementation of this approach.

#include <iostream>
using namespace std;
 
/* The main function that teturns the max possible product */
int maxProd(int n)
{
   // n equals to 2 or 3 must be handled explicitly
   if (n == 2 || n == 3) return (n-1);
 
   // Keep removing parts of size 3 while n is greater than 4
   int res = 1;
   while (n > 4)
   {
       n -= 3;
       res *= 3; // Keep multiplying 3 to res
   }
   return (n * res); // The last part multiplied by previous parts
}
 
/* Driver program to test above functions */
int main()
{
    cout << "Maximum Product is " << maxProd(10);
    return 0;
}
Output:

Maximum Product is 36
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

     

       
Related Topics:

Job Sequencing Problem | Set 1 (Greedy Algorithm)
Multiply two polynomials
Algorithm Practice Question for Beginners | Set 1
Count Distinct Non-Negative Integer Pairs (x, y) that Satisfy the Inequality x*x + y*y < n
Binomial Heap
Print all increasing sequences of length k from first n natural numbers
Find n’th number in a number system with only 3 and 4
Minimum Cost Polygon Triangulation


资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 HttpServletRequestWrapper 是 Java Servlet API 中的一个工具类,位于 javax.servlet.http 包中,用于对 HttpServletRequest 对象进行封装,从而在 Web 应用中实现对 HTTP 请求的拦截、修改或增强等功能。通过继承该类并覆盖相关方法,开发者可以轻松地自定义请求处理逻辑,例如修改请求参数、添加请求头、记录日志等。 参数过滤:在请求到达处理器之前,可以对请求参数进行检查或修改,例如去除 URL 编码、过滤敏感信息或进行安全检查。 请求头操作:可以修改或添加请求头,比如设置自定义的 Content-Type 或添加认证信息。 请求属性扩展:在原始请求的基础上添加自定义属性,供后续处理使用。 日志记录:在处理请求前记录请求信息,如 URL、参数、请求头等,便于调试和监控。 跨域支持:通过添加 CORS 相关的响应头,允许来自不同源的请求。 HttpServletRequestWrapper 通过继承 HttpServletRequest 接口并重写其方法来实现功能。开发者可以在重写的方法中添加自定义逻辑,例如在获取参数时进行过滤,或在读取请求体时进行解密。当调用这些方法时,实际上是调用了包装器中的方法,从而实现了对原始请求的修改或增强。 以下是一个简单的示例,展示如何创建一个用于过滤请求参数的包装器: 在 doFilter 方法中,可以使用 CustomRequestWrapper 包装原始请求: 这样,每当调用 getParameterValues 方法时,都会先经过自定义的过滤逻辑。 HttpServletRequestWrapper 是 Java Web 开发中一个强大的工具,它提供了灵活的扩展性,允许开发者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值