【人工智能机器学习基础篇】——深入详解监督学习之回归与分类:理解线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林、梯度提升机(GBM)等算法

深入详解监督学习之回归与分类

        监督学习是机器学习的核心分支之一,主要分为回归(Regression)和分类(Classification)两大任务。回归任务旨在预测连续的数值输出,而分类任务则是将输入数据分配到离散的类别中。本文将深入探讨监督学习中的几种关键算法,包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和梯度提升机(GBM),帮助读者全面理解这些常用算法的原理、应用场景及其优缺点。

目录

深入详解监督学习之回归与分类

1. 线性回归

1.1 概述

评论 99
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值