Build A Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
题意
给定一个空二叉查找树以及一串数字,要求将数字按照BST的性质填入二叉树中(只有唯一填法),并输出BST的层序序列。
思路
由二叉查找树的性质可得,其中序序列必然是有序的(递增),所以只要对空树进行中序遍历,在遍历过程中将排好序的整数依次填入空结点,即可重建二叉树。再来进行层序遍历输出即可。
代码实现
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 100;
int value[maxn];
int index = 0; // 记录已使用的整数的个数
struct Node
{
int data;
int lchild, rchild;
} node[maxn];
void inOrder(int root)
{
if (root == -1)
return;
inOrder(node[root].lchild);
node[root].data = value[index++]; // 中序遍历填入整数
inOrder(node[root].rchild);
}
void levelOrder(int root, bool flag) // 层序输出,flag用来控制空格输出
{
queue<int> q;
q.push(root);
while (!q.empty())
{
int now = q.front();
q.pop();
if (flag)
flag = false;
else
printf(" ");
printf("%d", node[now].data);
if (node[now].lchild != -1)
q.push(node[now].lchild);
if (node[now].rchild != -1)
q.push(node[now].rchild);
}
}
int main()
{
int n;
int l, r;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
scanf("%d %d", &l, &r);
node[i].lchild = l;
node[i].rchild = r;
}
for (int i = 0; i < n; i++)
scanf("%d", &value[i]);
sort(value, value + n); // 对整数序列进行排序
inOrder(0);
levelOrder(0, true);
return 0;
}