Bulb Switcher (M)
There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every second bulb. On the third round, you toggle every third bulb (turning on if it’s off or turning off if it’s on). For the i-th round, you toggle every i bulb. For the n-th round, you only toggle the last bulb. Find how many bulbs are on after n rounds.
Example:
Input: 3
Output: 1
Explanation:
At first, the three bulbs are [off, off, off].
After first round, the three bulbs are [on, on, on].
After second round, the three bulbs are [on, off, on].
After third round, the three bulbs are [on, off, off].
So you should return 1, because there is only one bulb is on.
题意
对n个灯泡进行n次操作,第i次操作会切换第k*i个灯泡的状态。问n次操作后会有多少灯泡亮着。
思路
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
状态 | O | O | O | O | O | O | O | O |
状态 | O | X | O | X | O | X | O | X |
状态 | O | X | X | X | O | O | O | X |
状态 | O | X | X | O | O | O | O | O |
状态 | O | X | X | O | X | O | O | O |
状态 | O | X | X | O | X | X | O | O |
状态 | O | X | X | O | X | X | X | O |
状态 | O | X | X | O | X | X | X | X |
总次数 | 1 | 2 | 2 | 3 | 2 | 4 | 2 | 4 |
通过找规律不能发现,当一个灯泡被操作的次数为奇数时,这个灯泡最终会保持点亮。而第i个灯泡被操作的次数等于i所对应的因数的个数。而一个数的因数总是成对出现的,如8=1∗8=2∗48=1*8=2*48=1∗8=2∗4,只有当出现4=2∗24=2*24=2∗2这种完全平方数开根的情况,总因数个数才为奇数。所以问题就转化为了求1-n中完全平方数的个数。
代码实现
class Solution {
public int bulbSwitch(int n) {
int res = 0;
for (int i = 1; i * i <= n; i++) {
res++;
}
return res;
}
}