分类任务实现模型(投票式)集成代码模版
简介
本实验使用上一博客的深度学习分类模型训练代码模板-优快云博客,自定义投票式集成,手动实现模型集成(投票法)的代码。最后通过tensorboard进行可视化,对每个基学习器的性能进行对比,直观的看出模型集成的作用。
代码
# -*- coding:utf-8 -*-
import os
import torch
import torchvision
import torchmetrics
import torch.nn as nn
import my_utils as utils
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torchensemble.utils import set_module
from torchensemble.voting import VotingClassifier
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
parser.add_argument("--data-path", default=r"E:\Pytorch-Tutorial-2nd\data\datasets\cifar10-office", type=str,
help="dataset path")
parser.add_argument("--model", default="resnet8", type=str, help="model name")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-b", "--batch-size", default=128, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=200, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--opt", default="SGD", type=str, help="optimizer")
parser.add_argument("--random-seed", default=42, type=int, help="random seed")
parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",

最低0.47元/天 解锁文章
1313

被折叠的 条评论
为什么被折叠?



