石子合并问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
对于给定n堆石子,计算合并成一堆的最小得分和最大得分。
Input
输入数据的第1行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。
Output
输出数据有两行,第1行中的数是最小得分,第2行中的数是最大得分。
Sample Input
4 4 4 5 9
Sample Output
43 54
Hint
Source
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int INF = 1 << 30;
const int N = 205;
int mins[N][N];
int maxs[N][N];
int sum[N],a[N];
int minval,maxval;
int n;
int getsum(int i,int j)
{
if(i+j >= n) return getsum(i,n-i-1) + getsum(0,(i+j)%n);
else return sum[i+j] - (i>0 ? sum[i-1]:0);
}
void Work(int a[],int n)
{
for(int i=0;i<n;i++)
mins[i][0] = maxs[i][0] = 0;
for(int j=1;j<n;j++)
{
for(int i=0;i<n;i++)
{
mins[i][j] = INF;
maxs[i][j] = 0;
for(int k=0;k<j;k++)
{
mins[i][j] = min(mins[i][j],mins[i][k] + mins[(i+k+1)%n][j-k-1] + getsum(i,j));
maxs[i][j] = max(maxs[i][j],maxs[i][k] + maxs[(i+k+1)%n][j-k-1] + getsum(i,j));
}
}
}
minval = mins[0][n-1];
maxval = maxs[0][n-1];
for(int i=0;i<n;i++)
{
minval = min(minval,mins[i][n-1]);
maxval = max(maxval,maxs[i][n-1]);
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
sum[0] = a[0];
for(int i=1;i<n;i++)
sum[i] = sum[i-1] + a[i];
Work(a,n);
printf("%d\n%d\n",minval,maxval);
}
return 0;
}