kmp算法 汇总

KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法。


/*
 * next[]的含义(前提):x[i-next[i]...i-1] = x[0...next[i]-1]这很重要;
 * next[i]为满足x[i-z...i-1] = x[0...z-1]的最大值z(就是x的自身匹配);
 */
 
 //求next的代码实现
 /*
 * next[]求到了next[m],这个next[m]作用还很大;
 */
void kmp_pre(char x[], int m, int next[]) {
    int i, j;
    j = next[0] = -1;
    i = 0;
    while (i < m) {
        while (-1 != j && x[i] != x[j]) j = next[j];
        //j = -1,表示第0位都没匹配成功;那就要直接推进一位;
        next[++i] = ++j;
    }
}

/*
 *还可以有一个小优化;
 */
void preKMP(char x[], int m, int kmpNext[]) {
    int i, j;
    j = kmpNext[0] = -1;
    i = 0;
    while (i < m) {
        while (-1 != j && x[i] != x[j]) j = kmpNext[j];
        if (x[++i] == x[++j]) kmpNext[i] = kmpNext[j];
        else kmpNext[i] = j;
        /*这个if很6,这除去了一些无意义的next[],大概意思是
        *如果x[j]匹配失败了,那么就执行 j = next[j];
        *而x[j] = x[next[j]]所以x[next[j]]肯定也会匹配失败。
        *所以就说这个next[j]是无意义的。
        */
    }
}

/*
 *x与y匹配;
 *返回x在y中出现的次数,可以重叠
 *与求next[]函数的写法基本相似;
 */
 
 int next[10010];
 int KMP_Count(char x[], int m, char y[], int n) {
     //x是模式串,y是主串;
     int i, j;
     int ans = 0;
     //preKMP(x, m, next);
     kmp_pre(x, m, next);
     i = j = 0;
     while (i < n) {
        while (-1 != j && y[i] != x[j]) j = next[j];
        i++; j++;
        if (j >= m) {
            ans++;
            j = next[j];
        }
     }
     return ans;
 }


智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值