Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2136 Accepted Submission(s): 708
Problem Description
There is a sequence of integers. Your task is to find the longest subsequence that satisfies the following condition: the difference between the maximum element and the minimum element of the subsequence is no smaller than m and no larger than k.
Input
There are multiple test cases.
For each test case, the first line has three integers, n, m and k. n is the length of the sequence and is in the range [1, 100000]. m and k are in the range [0, 1000000]. The second line has n integers, which are all in the range [0, 1000000].
Proceed to the end of file.
For each test case, the first line has three integers, n, m and k. n is the length of the sequence and is in the range [1, 100000]. m and k are in the range [0, 1000000]. The second line has n integers, which are all in the range [0, 1000000].
Proceed to the end of file.
Output
For each test case, print the length of the subsequence on a single line.
Sample Input
5 0 0 1 1 1 1 1 5 0 3 1 2 3 4 5
Sample Output
5 4
Source
Recommend
zhengfeng
单调队列。
维护最大值和最小值,如果发现最大值和最小值的差大于k,那么就移动下标最靠前的队列。
注意如下数据:
5 2 4
2 1 5 2 2
应该用一个last标记上一个移动的位置,然后答案就是max{i-last},之前没有这个标记wa了一次。
#include <stdio.h>
#include <queue>
#include <algorithm>
using namespace std;
int a[100005];
deque <int> q1;
deque <int> q2;
int main()
{
int i,j,n,x,y,ans,last;
while(scanf("%d%d%d",&n,&x,&y)!=EOF)
{
for (i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
ans=0;
last=-1;
while(!q1.empty()) q1.pop_front();
while(!q2.empty()) q2.pop_front();
for (i=0;i<n;i++)
{
while(!q1.empty() && a[i]>a[q1.back()]) q1.pop_back();
while(!q2.empty() && a[i]<a[q2.back()]) q2.pop_back();
q1.push_back(i);
q2.push_back(i);
while(!q1.empty() && !q2.empty() && a[q1.front()]-a[q2.front()]>y)
{
if (q1.front()>q2.front())
{
last=q2.front();
q2.pop_front();
}
else if (q1.front()<q2.front())
{
last=q1.front();
q1.pop_front();
}
else
{
last=q1.front();
q1.pop_front();
q2.pop_front();
}
}
if (!q1.empty() && !q2.empty() && a[q1.front()]-a[q2.front()]>=x)
{
ans=max(ans,i-last);
}
}
printf("%d\n",ans);
}
return 0;
}