the initialization of ANN weights and activation function

本文探讨了神经网络中权重初始化和激活函数选择的重要性。强调了权重应当适中且随机,过小或过大都会带来问题;同时指出激活函数在零附近保持线性的必要性,并解释了这些选择背后的原因。

the chioce of weights initialization and activation function is a paradigm: 1. weights must be small suitablely at random(too small is bad). 2. activation function is supposed to be linear in range of zero.

before I list some reasons, there are two foundational facts should be known: 1. weights initialization has strong relations to activation funcions; 2. uniform weights is meaningless, because it can not represent its knowledge that should deal with inputs. (this is a bit metaphysical, but intuitional. e.g. all weights is zero will make the network lose learning ability, delta_w will aslo be zero because the definition contain item derivate of f(net) and that is zero); 3. activation function could reflect prioi knowledge: Gauss distribution is prefered if targets has Gauss distribution.

1. large weights initialization will saturate activation function and this "saturate" is a property of activation function on purpose which used to limiting wx in order to limiting the time of training(search space is limited). remind point 2: if all hidden units is saturated, then network have been crippled due to weights of output is nearly uniform.

2. too small weights slow down learning rate. the reason is: delta_w contain item w, too small w will lead to situation of which modification vaule is small too irrespective of others items, or delta_w is smallest in all consideration because t and x is independence of network itself.

3. activation function's linear property in range of zero. here, I have to say I have not understand this. following is a note in my reading: "the linearity of activation function makes inputs and outputs in proprotion. a little change in inputs vaule will not lead to a big shift in outputs. so the sum error should be small and this assumpution aslo satisify natural condition: two almost same inputs has low probablity to be two different category..." notice that this is corresponding to weights initialization again: weights initialization take place in range near zero.

采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值