Notes about NLP and IR

本文探讨了一阶谓词逻辑(FOPC)在自然语言处理中的应用及其局限性。提出通过名词化来解决谓词过生成的问题,并讨论了如何将动作从其主体中抽象出来以改进谓词表达。

NLP introduces First Order Predicate Calculus to implementing meaning of our languages, however this method can't completely express the meaning understanded by ourselves because machine has not perception. Rather than human, what the machine percepted is located in higher, more abstract level than reality.(in general, it is FOPC).

Using prediates is intuitional: human-being understand and express this world should begin from 2 statements: 1, A do something on B; 2, A is B. In fact, these 2 statements is predicates. I think all complex languages is derived from them. Wittgenstein describe language by 3 forms: representative form, logical form, reality. Representative form can be viewed as kinds of expression of reality, logical form is mini similarity between representative form and reality. Reality is important, in a manner, reality is meaning.

We try to find a thing close to reality which must has properties: 1, a model of language(more concise); 2, ability of expression(too weak and too complex is prohibited). FOPC is competent but there still is some problems: using verb to be the name of predicates will result in overgeneration. Because a action can take place in a location, time. Its taker can be one thing or many things. These combination overgenerates a series of predicates belong to that predicate.

Reification provides a good solution of which concreting a verb to a 'noun'. This let me remind Wittgenstein's arguments about a predicate love(A,B). In fact, this statement should explained by a way of which 'love B' be a property belong to A, and A is the bearer of that property.

Abstracting action out of its owner in language fall into trap in which predicates concludes language. Reification requires more separation: divide eat into 'eater', 'eaten' and  so on. Using more smaller primitive atomic to representing.

IR is coming soon

【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值