题目:
Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 the same, where in each step you can delete one character in either string.
Example 1:
Input: "sea", "eat" Output: 2 Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".
Note:
- The length of given words won't exceed 500.
- Characters in given words can only be lower-case letters.
思路:
这道题目其实就是求两个字符串的最长公共子序列(LCS)的变种:假如word1和word2的长度分别是len1和len2,其最长公共子序列的长度为len,那么最少只需要删除len1 + len2 - len个字符,就可以使得word1和word2变为一样。LCS是一道典型的动态规划题目:我们定义dp[i][j]表示word1的前i个字符和word2的前j个字符的最长公共子序列,那么其状态转移方程为:
dp[i][j] = dp[i - 1][j - 1] + 1,如果word1[i - 1] == word2[j - 1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]),如果word1[i - 1] != word2[j - 1]。
算法的时间复杂度是O(mn),空间复杂度也是O(mn)。但是注意到dp[i][j]其实只和其临近的常数个状态有关,所以其实空间复杂度还可以进一步优化到min(m,n)。读者可以自己实现一下,哈哈。
代码:
class Solution {
public:
int minDistance(string word1, string word2) {
int len1 = word1.length(), len2 = word2.length();
vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));
for (int i = 1; i <= len1; ++i) {
for (int j = 1; j <= len2; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return len1 + len2 - dp[len1][len2] * 2;
}
};