前言
在进行深度学习网络调试参数的时候,往往是将整个训练过程完了之后查看训练的结果。但是除了这种办法之外还可以通过网络可视化来帮助进行参数调试,这里封装了一个小小的类,提供网络显示的接口,传入网络的名称就好了
1. 类实现
# -*-coding=utf-8-*-
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append('/home/sucker/Desktop/caffe-1.0/python')
import caffe
class Net_Show:
def __init__(self, net):
self.caffe_net = net
self.layer_dic = {}
# layer info(name&shape)
def ShowLayer_Info(self):
layer_name = [key for key, value in self.caffe_net.params.items()]
layer_param = [value[0].data.shape for key, value in self.caffe_net.params.items()]
for i in np.arange(0, len(layer_name)):
self.layer_dic[layer_name[i]] = layer_param[i]
for name in self.layer_dic:
print name, self.layer_dic[name]
# layer data show
def show_data(self, data, name, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data, cmap='gray')
plt.axis('off')
plt.title(name)
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
plt.show()
# show layer data
def ShowBlob_Data(self, layer_name):
data = self.caffe_net.blobs[layer_name].data[0]
print_str = layer_name + ' data size is : ' + str(data.shape)
print print_str
self.show_data(data, layer_name+' data')
# show layer params
def ShowBlob_Param(self, layer_name):
shape_size = np.array(self.layer_dic[layer_name])
data = self.caffe_net.params[layer_name][0].data
print_str = layer_name + ' param size is : ' + str(data.shape)
print print_str
# data = data.transpose(0, 2, 3, 1)
data = data.reshape(shape_size[0]*shape_size[1], shape_size[2], shape_size[3])
self.show_data(data, layer_name+' param')
2. 使用示例
caffe.set_mode_gpu()
solver = caffe.SGDSolver('solver.prototxt')
solver.step(10000)
m_show.caffe_net = solver.net
m_show.ShowBlob_Data('Convolution2')
m_show.ShowBlob_Param('Convolution1')