一、实验目的
(1)熟悉Spark的RDD基本操作及键值对操作;
(2)熟悉使用RDD编程解决实际具体问题的方法。
二、实验内容和要求
1.spark-shell交互式编程
数据集包含了某大学计算机系的成绩,数据格式如下所示:
Tom,DataBase,80 Tom,Algorithm,50 Tom,DataStructure,60 Jim,DataBase,90 Jim,Algorithm,60 Jim,DataStructure,80 …… |
请根据给定的实验数据,在spark-shell中通过编程来计算以下内容(根据情况修改文件路径):
- 该系总共有多少学生;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/data1.txt")
val par = lines.map(row=>row.split(",")(0))
val distinct_par = par.distinct() //去重操作
distinct_par.count //取得总数
- 该系共开设来多少门课程;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val par = lines.map(row=>row.split(",")(1))
val distinct_par = par.distinct()
distinct_par.count
- Tom同学的总成绩平均分是多少;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val pare = lines.filter(row=>row.split(",")(0)=="Tom")
pare.foreach(println)
Tom,DataBase,26
Tom,Algorithm,12
Tom,OperatingSystem,16
Tom,Python,40
Tom,Software,60
pare.map(row=>(row.split(",")(0),row.split(",")(2).toInt)).mapValues(x=>(x,1)).reduceByKey((x,y) => (x._1+y._1,x._2 + y._2)).mapValues(x => (x._1 / x._2)).collect()
//res9: Array[(String, Int)] = Array((Tom,30))
- 求每名同学的选修的课程门数;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val pare = lines.map(row=>(row.split(",")(0),row.split(",")(1)))
pare.mapValues(x => (x,1)).reduceByKey((x,y) => (" ",x._2 + y._2)).mapValues(x => x._2).foreach(println)
- 该系DataBase课程共有多少人选修;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase")
pare.count
res1: Long = 126
- 各门课程的平均分是多少;
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val pare = lines.map(row=>(row.split(",")(1),row.split(",")(2).toInt))
pare.mapValues(x=>(x,1)).reduceByKey((x,y) => (x._1+y._1,x._2 + y._2)).mapValues(x => (x._1 / x._2)).collect()
res0: Array[(String, Int)] = Array((Python,57), (OperatingSystem,54), (CLanguage,50), (Software,50), (Algorithm,48), (DataStructure,47), (DataBase,50), (ComputerNetwork,51))
(7)使用累加器计算共有多少人选了DataBase这门课。
val lines = sc.textFile("file:///usr/local/spark/sparksqldata/ data1.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase").map(row=>(row.split(",")(1),1))
val accum = sc.longAccumulator("My Accumulator")
pare.values.foreach(x => accum.add(x))
accum.value
res19: Long = 126
2.编写独立应用程序实现数据去重
对于两个输入文件A和B,编写Spark独立应用程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。
实验答案参考步骤如下:
(1)假设当前目录为/home/hadoop/spark/mycode/remdup,在当前目录下新建一个目录mkdir -p src/main/scala,然后在目录/home/hadoop/spark/mycode/remdup/src/main/scala下新建一个remdup.scala,复制下面代码;
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object RemDup {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("RemDup")
val sc = new SparkContext(conf)
val dataFile = "file:///home/charles/data"
val data = sc.textFile(dataFile,2)
val res = data.filter(_.trim().length>0).map(line=>(line.trim,"")).partitionBy(new HashPartitioner(1)).groupByKey().sortByKey().keys
res.saveAsTextFile("result")
}
}
(2)在目录/ home/hadoop /spark/mycode/remdup目录下新建simple.sbt,复制下面代码(注意版本号和自己安装的软件包匹配):
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.15"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.2.0"
(3)在目录/ home/hadoop /spark/mycode/remdup下执行下面命令打包程序
$ sudo / home/hadoop /sbt/sbt package
4)最后在目录/ home/hadoop /spark/mycode/remdup下执行下面命令提交程序
$ / home/hadoop /spark/bin/spark-submit --class "RemDup" /usr/local/spark/mycode/remdup/target/scala-2.12/simple-project_2.12-1.0.jar
5)在目录/ home/hadoop /spark/mycode/remdup/result下即可得到结果文件。
3.编写独立应用程序实现求.平均值问题
每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生名字,第二个是学生的成绩;编写Spark独立应用程序求出所有学生的平均成绩,并输出到一个新文件中。下面是输入文件和输出文件的一个样例,供参考。
实验答案参考步骤如下:
(1)假设当前目录为/ home/hadoop /spark/mycode/avgscore,在当前目录下新建一个目录mkdir -p src/main/scala,然后在目录/home/hadoop /spark/mycode/avgscore/src/main/scala下新建一个avgscore.scala,复制下面代码;
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object AvgScore {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("AvgScore")
val sc = new SparkContext(conf)
val dataFile = "file:///home/charles/data"
val data = sc.textFile(dataFile,3)
val res = data.filter(_.trim().length>0).map(line=>(line.split(" ")(0).trim(),line.split(" ")(1).trim().toInt)).partitionBy(new HashPartitioner(1)).groupByKey().map(x => {
var n = 0
var sum = 0.0
for(i <- x._2){
sum = sum + i
n = n +1
}
val avg = sum/n
val format = f"$avg%1.2f".toDouble
(x._1,format)
})
res.saveAsTextFile("result")
}
}
(2)在目录/ home/hadoop /spark/mycode/avgscore目录下新建simple.sbt,复制下面代码:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.15"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.2.0"
(3)在目录/ home/hadoop /spark/mycode/avgscore下执行下面命令打包程序
$ sudo / home/hadoop /sbt/sbt package
4)最后在目录/ home/hadoop /spark/mycode/avgscore下执行下面命令提交程序
$ / home/hadoop /spark/bin/spark-submit --class "AvgScore" /usr/local/spark/mycode/avgscore/target/scala-2.12/simple-project_2.12-1.0.jar
- 在目录/ home/hadoop /spark/mycode/avgscore/result下即可得到结果文件。