深度学习之pytorch实现逻辑斯蒂回归

本文介绍了如何使用PyTorch库实现逻辑斯蒂回归,包括其在二分类问题中的应用、sigmoid函数的作用以及与线性回归的代码区别,通过实例展示了如何计算损失值并进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决的问题

logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类)
于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性

在这里插入图片描述

数学公式

logiatic函数

在这里插入图片描述

损失值

在这里插入图片描述

代码

也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要输出一个一个概率,也就是在区间[0,1]之间。我们就想到需要找出一个映射,把我们之前的输出集合R映射到区间[0,1],他就是函数Sigma,这样我们就轻松的实现了实数集合到0~1之间的映射

import  torch
import  torch.nn.functional as F
import  numpy as np
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔了成

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值