弦截法是求非线性方程近似根的一种线性近似方法。它是以与曲线弧AB对应的弦AB与x轴的交点横坐标作为曲线弧AB与x轴的交点横坐标的近似值μ来求出方程的近似解。该方法一般通过计算机编程来实现。
弦截法的原理是以直代曲即用弦(直线)代替曲线求方程的近似解,也就是利用对应的弦 与 轴的交点横坐标来作为曲线弧 与 轴的交点横坐标 的近似值。
算法分析
例如此题:
(1) 取两个不同点x1,x2,如果f(x1)和f(x2)符号相反,则(x1,x2)区间内必有一个根。如果f(x1)与f(x2)同符号,则应改变x1,x2,直到f(x1)、f(x2)异号为止。注意x1、x2的值不应差太大,以保证(x1,x2)区间内只有一个根。
(2) 连接(x1,f(x1))和(x2,f(x2))两点,此线(即弦)交x轴于x。
(3) 若f(x)与f(x1)同符号,则根必在(x,x2)区间内,此时将x作为新的x1。如果f(x)与f(x2)同符号,则表示根在(x1,x)区间内,将x作为新的x2。
(4) 重复步骤 (2) 和 (3) , 直到 |f(x)|<ε 为止, ε为一个很小的数, 例如 10-4. 此时认为 f(x)≈0 。
代码如下:
计算结果为:1.50975
参考文献:高等数学第七版上册(割线法),对于牛顿迭代的解读