import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import datasets
from tensorflow.keras import layers
print("TensorFlow version:", tf.__version__)
TensorFlow version: 2.6.4
下载并准备 CIFAR10 数据集
CIFAR10 数据集包含 10 类,共 60000 张彩色图片,每类图片有 6000 张。此数据集中 50000 个样例被作为训练集,剩余 10000 个样例作为测试集。类之间相互独立,不存在重叠的部分。
train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170500096/170498071 [==============================] - 6s 0us/step 170508288/170498071 [==============================] - 6s 0us/step
构造卷积神经网络模型
inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.summary()
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 32, 32, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 30, 30, 32) 896 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 13, 13, 64) 18496 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 4, 4, 128) 73856 _________________________________________________________________ flatten (Flatten) (None, 2048) 0 _________________________________________________________________ dropout (Dropout) (None, 2048) 0 _________________________________________________________________ dense (Dense) (None, 10) 20490 ================================================================= Total params: 113,738 Trainable params: 113,738 Non-trainable params: 0
编译并训练模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
history = model.fit(train_images, train_labels, epochs=30,
validation_split=0.3, batch_size = 128)
Epoch 1/30 274/274 [==============================] - 3s 8ms/step - loss: 1.8420 - accuracy: 0.3212 - val_loss: 1.5064 - val_accuracy: 0.4585 Epoch 2/30 274/274 [==============================] - 1s 5ms/step - loss: 1.4373 - accuracy: 0.4795 - val_loss: 1.3612 - val_accuracy: 0.5140 Epoch 3/30 274/274 [==============================] - 1s 5ms/step - loss: 1.2847 - accuracy: 0.5413 - val_loss: 1.2257 - val_accuracy: 0.5707 Epoch 4/30 274/274 [==============================] - 1s 5ms/step - loss: 1.1985 - accuracy: 0.5726 - val_loss: 1.1569 - val_accuracy: 0.5939 Epoch 5/30 274/274 [==============================] - 1s 5ms/step - loss: 1.1186 - accuracy: 0.6062 - val_loss: 1.0632 - val_accuracy: 0.6331
...
Epoch 25/30 274/274 [==============================] - 1s 5ms/step - loss: 0.6362 - accuracy: 0.7758 - val_loss: 0.7557 - val_accuracy: 0.7424 Epoch 26/30 274/274 [==============================] - 1s 5ms/step - loss: 0.6278 - accuracy: 0.7801 - val_loss: 0.7795 - val_accuracy: 0.7314 Epoch 27/30 274/274 [==============================] - 1s 5ms/step - loss: 0.6131 - accuracy: 0.7828 - val_loss: 0.7607 - val_accuracy: 0.7392 Epoch 28/30 274/274 [==============================] - 1s 5ms/step - loss: 0.5991 - accuracy: 0.7900 - val_loss: 0.7622 - val_accuracy: 0.7448 Epoch 29/30 274/274 [==============================] - 2s 6ms/step - loss: 0.5978 - accuracy: 0.7868 - val_loss: 0.7655 - val_accuracy: 0.7411 Epoch 30/30 274/274 [==============================] - 1s 5ms/step - loss: 0.5863 - accuracy: 0.7935 - val_loss: 0.7420 - val_accuracy: 0.7507
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.3, 1])
plt.legend(loc='lower right')
plt.savefig("/kaggle/working/temp.png",dpi=800)
model.evaluate(test_images, test_labels)
313/313 [==============================] - 1s 2ms/step - loss: 0.7392 - accuracy: 0.7478 [0.7391936779022217, 0.7477999925613403]