大模型本地部署 | 详细教程,私有化部署体验 Dify!_dify 本地部署

一、简介

Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。

二、功能比较

三、使用 Dify

1、Dify 云服务版:任何人都可以零设置尝试。它提供了自部署版本的所有功能,并在沙盒计划中包含 200 次免费的 GPT-4 调用。

2、Dify Premium:是一款 AWS AMI 产品,允许自定义品牌,并可作为 EC2 一键部署到你的 AWS VPC 上。前往 AWS Marketplace 进行订阅并使用,它适合以下场景:

  • 在中小型企业内,需在服务器上创建一个或多应用程序,并且关心数据私有化。
  • 你对 Dify Cloud 订阅计划感兴趣,但所需的用例资源超出了计划内所提供的资源。
  • 你希望在组织内采用 Dify Enterprise 之前进行 POC 验证。

3、Dify 社区版:即开源版本,你可以通过以下两种方式之一部署 Dify 社区版。

  • Docker Compose 部署
  • 本地源码启动
四、基本信息

1、在线体验:https://dify.ai/
2、开源地址:https://github.com/langgenius/dify
3、官方文档:https://docs.dify.ai/v/zh-hans

五、核心功能列表

1、工作流:在画布上构建和测试功能强大的 AI 工作流程。

2、全面的模型支持:与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。 完整的支持模型提供商列表可在此处找到。

3、Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。

4、RAG Pipeline: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。

5、Agent 智能体: 可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。

  • Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DALL·E、Stable Diffusion 和 WolframAlpha 等。

6、LLMOps: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。

7、后端即服务: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。

六、Dify 私有化部署
1、系统要求

在安装 Dify 之前,请确保您的机器满足以下最低系统要求:

  • CPU >= 2 Core
  • RAM >= 4GB
2、快速启动

首先,克隆 Dify 源代码至本地,然后进入 docker 目录,复制一份环境变量,采用默认端口,一键启动:

git clone https://github.com/langgenius/dify.git
cd dify/docker
cp .env.example .env
docker compose up -d


如果报错:

Error response from daemon: Get “https://registry-1.docker.io/v2/”: EOF

请修改daemon.json文件,设置国内镜像。

"registry-mirrors": [
    "https://registry.docker-cn.com",
    "https://docker.mirrors.ustc.edu.cn",
    "http://hub-mirror.c.163.com",
    "https://cr.console.aliyun.com/"
  ]


  • Linux:vim /etc/docker/daemon.json
  • Mac:vim /Users/oscar/.docker/daemon.json

启动成功后,你会发现共有 9 个容器:

  • 3 个业务服务:api、worker、web
  • 6 个基础组件:weaviate、db、redis、nginx、ssrf_proxy、sandbox

内存占用共计 1790 M,所以至少确保有一台 2G 内存的机器。

在这里插入图片描述

因为项目中启动了一个容器 nginx 将 web 服务转发到 80 端口,所以在浏览器中,直接输入公网 IP 即可,设置一下管理员的账号密码,进入应用主界面。

在这里插入图片描述

在这里插入图片描述

七、接入大模型

设置里找到模型供应商,这里已经支持了上百款模型,我这里主要先接入了三款有免费额度的模型。
在这里插入图片描述

按照提示接入大模型

八、Dify 接入 Ollama 部署的本地模型

Ollama 是一个本地推理框架客户端,可一键部署如 Llama 2, Mistral, Llava 等大型语言模型。 Dify 支持接入 Ollama 部署的大型语言模型推理和 embedding 能力。

载并启动 Ollama

1、下载 Ollama:访问 https://ollama.ai/download,下载对应系统 Ollama 客户端。

2、运行 Ollama 并与 Llava 聊天

ollama run llava   

启动成功后,ollama 在本地 11434 端口启动了一个 API 服务,可通过 http://localhost:11434 访问。

3、在 Dify 中接入 Ollama 在 设置 > 模型供应商 > Ollama 中填入:

在这里插入图片描述

  • 模型名称:llava

  • 基础 URL:http://127.0.0.1:11434,此处需填写可访问到的 Ollama 服务地址。

(1)、若 Dify 为 docker 部署,建议填写局域网 IP 地址,如:http://192.168.1.100:11434 或 docker 宿主机 IP 地址,如:http://172.17.0.1:11434。

(2)、若为本地源码部署,可填写 http://localhost:11434。

  • 模型类型:对话

  • 模型上下文长度:4096

  • 模型的最大上下文长度,若不清楚可填写默认值 4096。

  • 最大 token 上限:4096:模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。

  • 是否支持 Vision:是(当模型支持图片理解(多模态)勾选此项,如 llava。)

点击 “保存” 校验无误后即可在应用中使用该模型。

Embedding 模型接入方式与 LLM 类似,只需将模型类型改为 Text Embedding 即可。

九、创建工作流

回到主页,点击创建空白应用,这里的聊天助手和文本生成应用,是功能最为单一的 LLM 应用,都不支持工具和知识库的接入。
在这里插入图片描述

Agent 和 工作流的区别:

  • Agent:智能体,基于大语言模型的推理能力,可以自主选择工具来完成任务,相对简单。
  • 工作流:以工作流的形式编排 LLM 应用,提供更多的定制化能力,适合有经验的用户。
    在这里插入图片描述
    通常,我们需要 Agent 和 工作流配合使用,Agent 负责对话理解,Workflow 处理具体的定制功能。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>我们正在处理用户关于Dify本地部署中配置本地大模型URL的问题。根据引用[2]和引用[3],我们知道在Dify中配置本地Ollama模型的URL需要注意以下几点:1.如果Dify是通过Docker部署的,那么填写Ollama的URL时,需要根据Ollama的运行位置来填写。-如果Ollama运行在宿主机上(与Dify同一个宿主机),那么Dify容器内访问宿主机的地址可以是`host.docker.internal`(在DockerforWindows/Mac中可用)或者宿主机的局域网IP(如192.168.x.x)。-引用[2]中建议填写局域网IP地址或docker宿主机IP地址,例如:http://192.168.1.100:11434或http://172.17.0.1:11434(注意:172.17.0.1是Docker默认网桥的网关地址,但实际宿主机地址可能不同,通常建议用宿主机的实际局域网IP)。2.引用[3]提到在环境变量中设置Ollama的API地址,例如:OLLAMA_API_BASE_URL=host.docker.internal:11434因此,配置步骤可以归纳为:步骤1:确定Ollama服务的运行地址和端口(默认是11434)。步骤2:根据Dify部署方式(Docker部署)来确定如何访问Ollama服务。-如果Ollama运行在宿主机上,那么Dify容器内可以使用`host.docker.internal`(在Windows/Mac的Docker中)或者宿主机的实际IP地址(推荐在Linux中使用,因为host.docker.internal在Linux中可能需要额外配置)。步骤3:在Dify的环境变量中设置Ollama的URL。具体操作如下:1.打开Dify的docker-compose.yml文件(或.env文件,取决于部署方式)。2.在环境变量部分添加或修改以下两个环境变量:-CUSTOM_MODEL_ENABLED=true#启用自定义模型-OLLAMA_API_BASE_URL=http://host.docker.internal:11434#这里替换成实际的URL注意:如果Ollama运行在另一个容器中,可以使用Docker网络中的容器名称和端口。但是,根据用户问题,我们关注的是本地部署,即Ollama运行在宿主机上。引用[2]中还提到,如果Dify是docker部署,建议填写局域网IP地址或docker宿主机IP地址。因此,我们也可以使用宿主机的IP地址(例如192.168.1.100)来替代`host.docker.internal`。例如:OLLAMA_API_BASE_URL=http://192.168.1.100:11434注意:需要确保宿主机的防火墙允许来自Docker容器的访问(端口11434)。步骤4:重启Dify服务以使配置生效。总结:配置本地大模型URL的关键在于正确设置环境变量`OLLAMA_API_BASE_URL`,指向运行Ollama服务的宿主机地址和端口。下面我们将以步骤形式回答用户问题。</think>### 如何在 Dify 本地部署中配置本地大模型的 URL 在 Dify 本地部署中配置本地大模型(如 Ollama)的 URL,需通过环境变量设置。以下是详细步骤: #### 配置步骤: 1. **修改环境变量文件** 打开 Dify 的 `.env` 配置文件(位于部署目录),添加以下参数: ```bash # 启用自定义模型 CUSTOM_MODEL_ENABLED=true # 指定 Ollama 的 API 地址 OLLAMA_API_BASE_URL=http://<宿主机IP>:11434 ``` **关键说明**: - **`<宿主机IP>` 填写规则**: - 若 Dify 通过 Docker 部署,填写宿主机的**局域网 IP**(如 `192.168.1.100`)[^2] - 或使用 Docker 内部域名 `host.docker.internal`(适用于 Windows/Mac)[^3] - **端口 `11434`**:Ollama 的默认 API 端口,需与 Ollama 服务端口一致 2. **重启 Dify 服务** 修改后重启 Docker 容器使配置生效: ```bash docker-compose down && docker-compose up -d ``` #### 验证配置: 1. 登录 Dify 管理界面,进入 **「模型供应商」>「自定义模型」** 2. 在模型配置中: - **模型名称**:填写本地模型标识(如 `llama3`) - **API 密钥**:留空(本地模型无需密钥) 3. 测试连接,确保状态显示为可用 #### 常见问题解决: - **连接失败**: - 检查防火墙是否开放 `11434` 端口 - 确认 Ollama 服务已运行:`curl http://localhost:11434/api/tags` - **跨容器通信问题**: - Docker 网络模式设为 `host` 或创建共享网络[^2] - Linux 系统需在 `docker run` 添加 `--add-host=host.docker.internal:host-gateway` > **原理说明**: > `CUSTOM_MODEL_ENABLED=true` 启用自定义模型支持,`OLLAMA_API_BASE_URL` 将 Dify 的模型请求路由到本地 Ollama 服务。该配置使 Dify 绕过云端 API,直接与本地模型交互[^3][^4]。 --- ### 相关问题 1. **如何验证 Ollama 本地模型是否正常运行?** 2. **Docker 部署时如何解决容器间网络隔离问题?** 3. **Dify 如何同时配置多个本地大模型?** 4. **自定义模型支持哪些参数调优?** [^1]: Dify 官方部署文档 [^2]: 大模型本地部署 | 详细教程私有化部署体验 Dify! [^3]: DeepSeek+Dify 部署本地大模型 [^4]: Dify 工作流与 Agent 架构解析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值