【Python数据分析--pandas学习笔记】Python数据分析库pandas详细学习笔记(内容详细,适合小白入门),数据分析学习笔记

一,pandas教程

1-1 pandas 安装

1-1-1 使用 pip 安装 pandas:

pip install pandas

安装成功后,我们就可以导入 pandas 包使用:

import pandas

1-1-2 查看 pandas 版本

>>> import pandas
>>> pandas.__version__  # 查看版本
'1.1.5'

导入 pandas 一般使用别名 pd 来代替:

>>> import pandas as pd
>>> pd.__version__  # 查看版本
'1.1.5'

1-1-3 一个简单的 pandas 实例:

import pandas as pd

mydataset = {
   
  'sites': ["Google", "Runoob", "Wiki"],
  'number': [1, 2, 3]
}

myvar = pd.DataFrame(mydataset)

print(myvar)

执行以上代码,输出结果为:

image-20240420144421838

1-2 Pandas 数据结构 - Series

Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。

Series 特点:

  • 索引: 每个 Series 都有一个索引,它可以是整数、字符串、日期等类型。如果没有显式指定索引,Pandas 会自动创建一个默认的整数索引。

  • 数据类型: Series 可以容纳不同数据类型的元素,包括整数、浮点数、字符串等。

  • Series 是 Pandas 中的一种基本数据结构,类似于一维数组或列表,但具有标签(索引),使得数据在处理和分析时更具灵活性。

    以下是关于 Pandas 中的 Series 的详细介绍: 创建 Series: 可以使用 pd.Series() 构造函数创建一个 Series 对象,传递一个数据数组(可以是列表、NumPy 数组等)和一个可选的索引数组。

pandas.Series( data, index, dtype, name, copy)

参数说明:

  • data:一组数据(ndarray 类型)。
  • index:数据索引标签,如果不指定,默认从 0 开始。
  • dtype:数据类型,默认会自己判断。
  • name:设置名称。
  • copy:拷贝数据,默认为 False。

创建一个简单的 Series 实例:

1-2-1 实例

import pandas as pd

a = [1, 2, 3]

myvar = pd.Series(a)

print(myvar)

image-20240420144621687

1-2-2 实例

import pandas as pd

a = [1, 2, 3]

myvar = pd.Series(a)

print(myvar[1])

输出结果如下:

2

我们可以指定索引值,如下实例:

1-2-3 实例

import pandas as pd

a = ["Google", "Runoob", "Wiki"]

myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)

输出结果如下:

Runoob

我们也可以使用 key/value 对象,类似字典来创建 Series:

1-2-4 实例

import pandas as pd

sites = {
   1: "Google", 2: "Runoob", 3: "Wiki"}

myvar = pd.Series(sites)

print(myvar)

image-20240420144917331

1-2-5 实例

import pandas as pd

sites = {1: "Google", 2: "Runoob", 3: "Wiki"}

myvar = pd.Series(sites, index = [1, 2])

print(myvar)

image-20240420144955995

设置 Series 名称参数:

1-2-6 实例

import pandas as pd

sites = {
   1: "Google", 2: "Runoob", 3: "Wiki"}

myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )

print(myvar)

image-20240420145105226

1-2-7 更多 Series 说明

7-1 基本操作:
# 获取值
value = series[2]  # 获取索引为2的值

# 获取多个值
subset = series[1:4]  # 获取索引为1到3的值

# 使用自定义索引
value = series_with_index['b']  # 获取索引为'b'的值

# 索引和值的对应关系
for index, value in series_with_index.items():
    print(f"Index: {
     index}, Value: {
     value}")
7-2 基本运算:
# 算术运算
result = series * 2  # 所有元素乘以2

# 过滤
filtered_series = series[series > 2]  # 选择大于2的元素

# 数学函数
import numpy as np
result = np.sqrt(series)  # 对每个元素取平方根
7-3 属性和方法:
# 获取索引
index = series_with_index.index

# 获取值数组
values = series_with_index.values

# 获取描述统计信息
stats = series_with_index.describe()

# 获取最大值和最小值的索引
max_index = series_with_index.idxmax()
min_index = series_with_index.idxmin()
7-4 注意事项:
  • Series 中的数据是有序的。
  • 可以将 Series 视为带有索引的一维数组。
  • 索引可以是唯一的,但不是必须的。
  • 数据可以是标量、列表、NumPy 数组等。

1-3 Pandas 数据结构 - DataFrame

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

DataFrame 特点:

  • 列和行: DataFrame 由多个列组成,每一列都有一个名称,可以看作是一个 Series。同时,DataFrame 有一个行索引,用于标识每一行。
  • 二维结构: DataFrame 是一个二维表格,具有行和列。可以将其视为多个 Series 对象组成的字典。
  • 列的数据类型: 不同的列可以包含不同的数据类型,例如整数、浮点数、字符串等。

image-20240420145333354

image-20240420145343579

DataFrame 构造方法如下:

pandas.DataFrame( data, index, columns, dtype, copy)

参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。

Pandas DataFrame 是一个二维的数组结构,类似二维数组。

1-3-1 实例 - 使用列表创建

import pandas as pd

data = [['Google', 10], ['Runoob', 12], ['Wiki', 13]]

# 创建DataFrame
df = pd.DataFrame(data, columns=['Site', 'Age'])

# 使用astype方法设置每列的数据类型
df['Site'] = df['Site'].astype(str)
df['Age'] = df['Age'].astype(float)

print(df)

也可以使用字典来创建:

1-3-2 实例 - 使用字典创建

import pandas as pd

data = {
   'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}

df = pd.DataFrame(data)

print (df)

image-20240420145500376

以下实例使用 ndarrays 创建,ndarray 的长度必须相同, 如果传递了 index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。

ndarrays 可以参考:NumPy Ndarray 对象

1-3-3 实例 - 使用 ndarrays 创建

import numpy as np
import pandas as pd

# 创建一个包含网站和年龄的二维ndarray
ndarray_data = np.array([
    ['Google', 10],
    ['Runoob', 12],
    ['Wiki', 13]
])

# 使用DataFrame构造函数创建数据帧
df = pd.DataFrame(ndarray_data, columns=['Site', 'Age'])

# 打印数据帧
print(df)

image-20240420145614856

从以上输出结果可以知道, DataFrame 数据类型一个表格,包含 rows(行) 和 columns(列):

image-20240420145634006

还可以使用字典(key/value),其中字典的 key 为列名:

1-3-4 实例 - 使用字典创建

import pandas as pd

data = [{
   'a': 1, 'b': 2},{
   'a': 5, 'b': 10, 'c': 20}]

df = pd.DataFrame(data)

print (df)

输出结果为:

   a   b     c
0  1   2   NaN
1  5  10  20.0

没有对应的部分数据为 NaN

Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:

1-3-5 实例

import pandas as pd

data = {
   
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
}

# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)

# 返回第一行
print(df.loc[0])
# 返回第二行
print(df.loc[1])

输出结果如下:

calories    420
duration     50
Name: 0, dtype: int64
calories    380
duration     40
Name: 1, dtype:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学网安的A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值