-
🍨 本文为🔗365天深度学习训练营 中的学习记录博客
-
🍖 原作者:K同学啊
在之前的案例中,我们多是使用`datasets.ImageFolder`函数直接导入已经分类好的数据集形成`Dataset`,然后使用`DataLoader`加载`Dataset`,但是如果对无法分类的数据集,我们如何导入,并进行识别呢?
本周我将自定义一个`MyDataset`加载车牌数据集并完成车牌识别
一、导入数据
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
👉代码输出:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
1. 获取类别名
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
data_dir = './015_licence_plate/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)
👉代码输出
['川W9BR26', '藏WP66B0', '沪E264UD', '津D8Z15T'...]
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str
👉代码输出
['015_licence_plate\\000000000_川W9BR26.jpg',
'015_licence_plate\\000000000_藏WP66B0.jpg',
'015_licence_plate\\000000001_沪E264UD.jpg',
......
'015_licence_plate\\000000003_甘G24298.jpg',
'015_licence_plate\\000000003_青SN18Q3.jpg',
'015_licence_plate\\000000004_云HZR899.jpg',
...]
2. 数据可视化
plt.figure(figsize=(14,5))
plt.suptitle("数据示例(K同学啊)",fontsize=15)
for i in range(18):
plt.subplot(3,6,i+1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# 显示图片
images = plt.imread(data_paths_str[i])
plt.imshow(images)
plt.show()
3. 标签数字化
import numpy as np
char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏",&#