🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊
🍺 要求:
-
自己搭建VGG-16网络框架
-
调用官方的VGG-16网络框架
-
如何查看模型的参数量以及相关指标
🍻 拔高(可选):
-
验证集准确率达到100%
-
使用PPT画出VGG-16算法框架图(发论文需要这项技能)
🔎 探索(难度有点大)
-
在不影响准确率的前提下轻量化模型
-
目前VGG16的Total params是134,276,932
🏡 我的环境:
-
语言环境:Python3.8
-
编译器:Jupyter Lab
-
深度学习环境:Pytorch
-
-
torch==1.12.1+cu113
-
-
-
torchvision==0.13.1+cu113
-
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") #忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
输出:
device(type='cuda')
2. 导入数据
import os,PIL,random,pathlib
data_dir = './7-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
输出:
['Dark', 'Green', 'Light', 'Medium']
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder("./7-data/",transform=train_transforms)
total_data
输出:
Dataset ImageFolder
Number of datapoints: 1200
Root location: ./7-data/
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
total_data.class_to_idx
输出:
{'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}
3. 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
输出:<