深度学习秘籍:RAG算法全解析,从入门到精通,一篇文章就够了!

如果说2023年见证了大语言模型的“寒武纪大爆发”,那么2024年则是多模态大模型“元年”。GPT-4o的出现让大家见识到多模态能力引入,给下游应用生态带来的巨大改变。随之而来的,RAG技术也将逐渐从单语言模态的RAG进化到多模态RAG。本文将带大家速览多模态RAG技术的原理及实现。

什么是RAG:Retrieval Augmented Generation,检索增强生成。是一种结合了信息检索技术和大型语言模型提示功能的框架。它通过从数据源检索信息来辅助LLM生成答案,提高了模型在知识密集型任务中的准确性和可信度。

我们为什么需要RAG:大型语言模型通常基于固定的历史数据集进行训练,这意味着它们的知识是过时的,无法涵盖最新的信息或特定领域的专业知识。RAG的目的是通过引入额外知识库,检索其中的相关信息,并根据检索结果给予用户回答。这也可以显著减少大模型因为并不具备相关知识,而出现的“幻觉”现象。当然我们也可以直接把整个数据库作为LLM的prompt输入,但由于transformer架构O(N2)复杂度的限制,LLM支持的最长输入长度通常有限,多数支持到128k token已经是极限,使得在面临更长知识库输入时,RAG依然是当下唯一可行的解决方案。

如何使用RAG?了解了什么是RGA,同步也理解了RAG的检索、增强和生成。那我们如何使用RAG呢?接下来以RAG搭建知识问答系统具体步骤为例,来讲解如何使用RAG?

  1. 数据准备与知识库构建

    • 收集数据:首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。

    • 数据清洗:对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。

    • 知识库构建:将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

  2. 检索模块设计:

    • 问题向量化:当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。

    • 相似度检索:在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。

    • 结果排序:根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

  3. 生成模块设计:

    • 上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息。

    • 大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

大家可以结合自己的业务领域知识,开始搭建医疗、法律、产品知识问答。先搭建Demo,然后工作中不断完善知识库问答对。

二、RAG的原理、流程及架构

RAG工作原理是什么?大型语言模型(LLM)面临两个问题,第一个问题是LLM会产生幻觉,第二个是LLM的知识中断。

  1. 知识截止:当 LLM 返回的信息与模型的训练数据相比过时时。每个基础模型都有知识截止,这意味着其知识仅限于训练时可用的数据。

  2. 幻觉:当模型自信地做出错误反应时,就会发生幻觉。

检索增强生成 (RAG) 摆脱了知识限制,整合了外部数据,从外部知识库中检索相关信息,增强模型的生成能力。

RAG工作流程是什么?

通过检索增强技术,将用户查询与索引知识融合,利用大语言模型生成准确回答。

  1. 知识准备:收集并转换知识文档为文本数据,进行预处理和索引。

  2. 嵌入与索引:使用嵌入模型将文本转换为向量,并存储在向量数据库中。

  3. 查询检索:用户查询转换为向量,从数据库中检索相关知识。

  4. 提示增强:结合检索结果构建增强提示模版。

  5. 生成回答:大语言模型根据增强模版生成准确回答。

RAG技术架构是什么?

RAG技术架构主要由两个核心模块组成,检索模块(Retriever)和生成模块(Generator)。

  1. 检索模块(Retriever):

    • 文本嵌入:使用预训练的文本嵌入模型(如GLM)将查询和文档转换成向量表示,以便在向量空间中进行相似度计算。

    • 向量搜索:利用高效的向量搜索技术(如FAISS、Milvus等向量数据库)在向量空间中检索与查询向量最相似的文档或段落。

    • 双塔模型:检索模块常采用双塔模型(Dual-Encoder)进行高效的向量化检索。双塔模型由两个独立的编码器组成,一个用于编码查询,另一个用于编码文档。这两个编码器将查询和文档映射到相同的向量空间中,以便进行相似度计算。

  2. 生成模块(Generator):

    • 强大的生成模型:生成模块通常使用在大规模数据上预训练的生成模型(如GLM),这些模型在生成自然语言文本方面表现出色。

    • 上下文融合:生成模块将检索到的相关文档与原始查询合并,形成更丰富的上下文信息,作为生成模型的输入。

    • 生成过程:生成模型根据输入的上下文信息,生成连贯、准确且信息丰富的回答或文本。

结合高效的检索模块(Retriever)与强大的生成模型(Generator),实现基于外部知识增强的自然语言生成能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习和面试资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

在这里插入图片描述

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值