人工智能知识表示方法

本文介绍了人工智能中几种重要的知识表示方法,包括状态空间表示、问题归约表示、谓词逻辑表示、语义网络表示、框架表示以及过程表示。这些方法帮助AI系统理解和解决问题,从静态的陈述式知识到动态的过程表示,涵盖了知识表示的多个层面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.状态空间表示

问题求解(problem solving)是个大课题,它涉及归约、推断、决策、规划、常识推理、定理证明和相关过程等核心概念。在分析了人工智能研究中运用的问题求解方法之后,就会发现许多问题求解方法是采用试探搜索方法的。

也就是说,这些方法是通过在某个可能的解答空间内寻找一个解来求解问题的。这种基于解答空间的问题表示和求解方法就是状态空间法,它是以状态和算符(operator)为基础来表示和求解问题的。

2.问题归约表示

问题归约( problem reduction)是另一种基于状态空间的问题描述与求解方法。已知问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的求解可以直接得到,从而解决了初始问题。

问题归约表示可由下列3部分组成:

(1)一个初始问题描述;

(2)一套把问题变换为子问题的操作符;

(3)一套本原问题描述(不能再被分割的问题);

从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的问题,直至最后把初始问题归约为一个平凡的本原问题集合,这就是问题归约的实质。

3.谓词逻辑表示

虽然命题逻辑( propositional logic)能够把客观世界的各种事实表示为逻辑命题,但是它具有较大的局限性,不适合于表示比较复杂的问题。谓词逻辑( predicate logic)允许表达那些无法用命题逻辑表达的事情。

逻辑语句,更具体地说,一阶谓词演算( first order predicate calculus)是一种形式语言,其根本目的在于把数学中的逻辑论证符号化。如果能够采用数学演绎的方式证明一个新语句是从那些已知正确的语句导出的,那么也就能断定这个新语句也是正确的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值