1.从订单明细表(order_detail)中查询累积销售件数高于其所属品类平均数的商品
需求结果
2.所用到的表和数据
--订单明细表
CREATE TABLE order_detail
(
`order_detail_id` string COMMENT '订单明细id',
`order_id` string COMMENT '订单id',
`sku_id` string COMMENT '商品id',
`create_date` string COMMENT '下单日期',
`price` decimal(16, 2) COMMENT '下单时的商品单价',
`sku_num` int COMMENT '下单商品件数'
) COMMENT '订单明细表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--数据装载
INSERT overwrite table order_detail
values ('1', '1', '1', '2021-09-27', 2000.00, 2),
('2', '1', '3', '2021-09-27', 5000.00, 5),
('3', '2', '4', '2021-09-28', 6000.00, 9),
('4', '2', '5', '2021-09-28', 500.00, 33),
('5', '3', '7', '2021-09-29', 100.00, 37),
('6', '3', '8', '2021-09-29', 600.00, 46),
('7', '3', '9', '2021-09-29', 1000.00, 12),
('8', '4', '12', '2021-09-30', 20.00, 43),
('9', '5', '1', '2021-10-01', 2000.00, 8),
('10', '5', '2', '2021-10-01', 10.00, 18),
('11', '5', '3', '2021-10-01', 5000.00, 6),
('12', '6', '4', '2021-10-01', 6000.00, 8),
('13', '6', '6', '2021-10-01', 2000.00, 1),
('14', '7', '7', '2021-10-01', 100.00, 17),
('15', '7', '8', '2021-10-01', 600.00, 48),
('16', '7', '9', '2021-10-01', 1000.00, 45),
('17', '8', '10', '2021-10-02', 100.00, 48),
('18', '8', '11', '2021-10-02', 50.00, 15),
('19', '8', '12', '2021-10-02', 20.00, 31),
('20', '9', '1', '2021-09-30', 2000.00, 9),
('21', '9', '2', '2021-10-02', 10.00, 5800),
('22', '10', '4', '2021-10-02', 6000.00, 1),
('23', '10', '5', '2021-10-02', 500.00, 24),
('24', '10', '6', '2021-10-02', 2000.00, 5),
('25', '11', '8', '2021-10-02', 600.00, 39),
('26', '12', '10', '2021-10-03', 100.00, 47),
('27', '12', '11', '2021-10-03', 50.00, 19),
('28', '12', '12', '2021-10-03', 20.00, 13000),
('29', '13', '1', '2021-10-03', 2000.00, 4),
('30', '13', '3', '2021-10-03', 5000.00, 1),
('31', '14', '4', '2021-10-03', 6000.00, 5),
('32', '14', '5', '2021-10-03', 500.00, 47),
('33', '14', '6', '2021-10-03', 2000.00, 8),
('34', '15', '7', '2021-10-03', 100.00, 20),
('35', '16', '10', '2021-10-03', 100.00, 22),
('36', '16', '11', '2021-10-03', 50.00, 42),
('37', '16', '12', '2021-10-03', 20.00, 7400),
('38', '17', '1', '2021-10-04', 2000.00, 3),
('39', '17', '2', '2021-10-04', 10.00, 21),
('40', '18', '4', '2021-10-04', 6000.00, 8),
('41', '18', '5', '2021-10-04', 500.00, 28),
('42', '18', '6', '2021-10-04', 2000.00, 3),
('43', '19', '7', '2021-10-04', 100.00, 55),
('44', '19', '8', '2021-10-04', 600.00, 11),
('45', '19', '9', '2021-10-04', 1000.00, 31),
('46', '20', '11', '2021-10-04', 50.00, 45),
('47', '20', '12', '2021-10-04', 20.00, 27),
('48', '21', '1', '2021-10-04', 2000.00, 2),
('49', '21', '2', '2021-10-04', 10.00, 39),
('50', '21', '3', '2021-10-04', 5000.00, 1),
('51', '22', '4', '2021-10-05', 6000.00, 8),
('52', '22', '5', '2021-10-05', 500.00, 20),
('53', '23', '7', '2021-10-05', 100.00, 58),
('54', '23', '8', '2021-10-05', 600.00, 18),
('55', '23', '9', '2021-10-05', 1000.00, 30),
('56', '24', '10', '2021-10-05', 100.00, 27),
('57', '24', '11', '2021-10-05', 50.00, 28),
('58', '24', '12', '2021-10-05', 20.00, 53),
('59', '25', '1', '2021-10-05', 2000.00, 5),
('60', '25', '2', '2021-10-05', 10.00, 35),
('61', '25', '3', '2021-10-05', 5000.00, 9),
('62', '26', '4', '2021-10-05', 6000.00, 1),
('63', '26', '5', '2021-10-05', 500.00, 13),
('64', '26', '6', '2021-10-05', 2000.00, 1),
('65', '27', '7', '2021-10-06', 100.00, 30),
('66', '27', '8', '2021-10-06', 600.00, 19),
('67', '27', '9', '2021-10-06', 1000.00, 33),
('68', '28', '10', '2021-10-06', 100.00, 37),
('69', '28', '11', '2021-10-06', 50.00, 46),
('70', '28', '12', '2021-10-06', 20.00, 45),
('71', '29', '1', '2021-10-06', 2000.00, 8),
('72', '29', '2', '2021-10-06', 10.00, 57),
('73', '29', '3', '2021-10-06', 5000.00, 8),
('74', '30', '4', '2021-10-06', 6000.00, 3),
('75', '30', '5', '2021-10-06', 500.00, 33),
('76', '30', '6', '2021-10-06', 2000.00, 5),
('77', '31', '8', '2021-10-07', 600.00, 13),
('78', '31', '9', '2021-10-07', 1000.00, 43),
('79', '32', '10', '2021-10-07', 100.00, 24),
('80', '32', '11', '2021-10-07', 50.00, 30),
('81', '33', '1', '2021-10-07', 2000.00, 8),
('82', '33', '2', '2021-10-07', 10.00, 48),
('83', '33', '3', '2021-10-07', 5000.00, 5),
('84', '34', '4', '2021-10-07', 6000.00, 10),
('85', '34', '5', '2021-10-07', 500.00, 44),
('86', '34', '6', '2021-10-07', 2000.00, 3),
('87', '35', '8', '2020-10-08', 600.00, 25),
('88', '36', '10', '2020-10-08', 100.00, 57),
('89', '36', '11', '2020-10-08', 50.00, 44),
('90', '36', '12', '2020-10-08', 20.00, 56),
('91', '37', '1', '2020-10-08', 2000.00, 2),
('92', '37', '2', '2020-10-08', 10.00, 26),
('93', '37', '3', '2020-10-08', 5000.00, 1),
('94', '38', '6', '2020-10-08', 2000.00, 6),
('95', '39', '7', '2020-10-08', 100.00, 35),
('96', '39', '8', '2020-10-08', 600.00, 34),
('97', '40', '10', '2020-10-08', 100.00, 37),
('98', '40', '11', '2020-10-08', 50.00, 51),
('99', '40', '12', '2020-10-08', 20.00, 27);
--商品信息表
CREATE TABLE sku_info
(
`sku_id` string COMMENT '商品id',
`name` string COMMENT '商品名称',
`category_id` string COMMENT '所属分类id',
`from_date` string COMMENT '上架日期',
`price` double COMMENT '商品单价'
) COMMENT '商品属性表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
--数据装载
insert overwrite table sku_info
values ('1', 'xiaomi 10', '1', '2020-01-01', 2000),
('2', '手机壳', '1', '2020-02-01', 10),
('3', 'apple 12', '1', '2020-03-01', 5000),
('4', 'xiaomi 13', '1', '2020-04-01', 6000),
('5', '破壁机', '2', '2020-01-01', 500),
('6', '洗碗机', '2', '2020-02-01', 2000),
('7', '热水壶', '2', '2020-03-01', 100),
('8', '微波炉', '2', '2020-04-01', 600),
('9', '自行车', '3', '2020-01-01', 1000),
('10', '帐篷', '3', '2020-02-01', 100),
('11', '烧烤架', '3', '2020-02-01', 50),
('12', '遮阳伞', '3', '2020-03-01', 20);
3.答案
解析:考察分组求和聚合函数的基本使用
3.1筛选出每个商品的销量
select sku_id,
sum(sku_num) sum_num
from order_detail
group by sku_id;
运行结果
3.2左连接sku_info表求出name字段以及品类平均销量
select t1.sku_id,
name,
sum_num,
avg(sum_num) over (
partition by
category_id rows between unbounded preceding
and unbounded following
) avg_cate_num
from (
select sku_id,
sum(sku_num) sum_num
from order_detail
group by sku_id
) t1
left join sku_info t2 on t2.sku_id = t1.sku_id;
运行结果
3.3 筛选出商品销量大于其品类平均销量的商品,得出结果
select sku_id,
name,
sum_num,
cast(avg_cate_num as bigint) cate_avg_num
from (
select t1.sku_id,
name,
sum_num,
avg(sum_num) over (
partition by
category_id rows between unbounded preceding
and unbounded following
) avg_cate_num
from (
select sku_id,
sum(sku_num) sum_num
from order_detail
group by sku_id
) t1
left join sku_info t2 on t2.sku_id = t1.sku_id
) t3
where sum_num > avg_cate_num;
运行结果