AI绘画 Stable Diffusion图像的脸部细节控制——采样器全解析

我们在运用AI绘画 Stable Diffusion 这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢?举例来说,假设我们输入的是:

a girl in dress walks down a country road,vision,front view,audience oriented,

在这里插入图片描述

图片效果总是不尽人意在这里插入图片描述

我们批量四个之后,除去背对的图片,我们可以看到其余三个的面部非常的奇怪

在这里插入图片描述

该如何快速处理呢?

原因分析

首先我们要了解脸部崩坏的原因

为什么在使用Stable Diffusion生成全身图像时,脸部细节往往不够精细?
  1. 问题一:图像分辨率和细节处理 在生成全身图像的过程中,模型会将计算资源集中于整个身体的描绘,包括服装、姿势和背景等要素。脸部通常仅占整个图像的一小部分,相对地,分配给脸部细节处理的资源就显得有限。这导致在最终生成的全身图像中,脸部的细节可能不如半身图像那样清晰。

  2. 问题二:训练数据的偏差效应 如果您的数据集中包含了大量高清的半身像而非全身像,Stable Diffusion模型可能会倾向于专注于处理这些半身像。由于全身像包含更多的图像元素和更高的维度,模型在绘制时需要投入更多的计算能力。因此,它在半身像的处理上可能会更有优势。

  3. 问题三:生成算法的局限性 当前的生成算法在处理尺寸不同的对象时,可能存在一些限制。例如,脸部区域是一个复杂且细节丰富的部分,而当算法处理全身图像时,可能难以保持对脸部细节质量的关注。

  4. 问题四:计算资源的限制 要生成一个特定尺寸的图像(如320x240像素),模型需要进行一系列运算,包括模板提取、特征表示、搜索和匹配等。这些都需要计算资源,并且在有限的资源下,对图像不同部分的优化可能会增加计算成本。因此,对于全身图像,可能对脸部细节质量有所优化,或者简化了处理流程。

解决策略

  1. 利用更高分辨率图像进行训练 通过使用更高分辨率的图像来进行训练,模型可以学习更多细节,这对提升生成照片中脸部的细节是有益的。但是更高的分辨率会导致人物拉长畸形,大大降低了质量

  2. 在生成全身图像时采用引导技术 在生成全身图像时,尝试应用引导技术(如注意力机制),这样可以让模型更加专注于脸部区域,从而提高对脸部细节的关注。

在这里插入图片描述

我们可以看到即使使用了prompt之后,Stable Diffusion似乎听不懂一样只是对面部加了一个渲染,但并没有达到预期的效果
在这里插入图片描述

局部重绘

在这里插入图片描述

我们可以直接点击这里到局部重绘,在选择重绘内容之后,如下:
在这里插入图片描述

提示词都不用变化,只需要把负面词加上即可

(worst quality, low quality:1.4),monochrome,zombie,bad_prompt_version2-neg,easynegative (1),(worst quality, low quality:1.4),(depth of field, blurry:1.2),(greyscale, monochrome:1.1),3D face,cropped,lowres,text,(nsfw:1.3),(worst quality:2),(low quality:2),(normal quality:2),normal quality,((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(bad proportions:1.331),extra limbs,(disfigured:1.331),(missing arms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extra arms and legs))),

  1. 调整参数设置 通过增加迭代次数或采用不同的采样方法,可以提高生成图像的质量,其中包括脸部细节。

在这里插入图片描述

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

请添加图片描述

采样器

在探讨Stable Diffusion的核心技术中,采样器扮演着至关重要的角色。本文将深入分析几种主要的采样器,以及它们各自的特点和应用场景,为读者提供更全面的了解。首先,我们来看Euler采样器。这是一个基础而简洁的工具,它采用欧拉方法来进行迭代操作。欧拉方法本质上是一种高效的数值积分技术,专门用于求解非线性常微分方程。当应用于图像生成时,Euler采样器通过迭代去噪,可以有效地去除图像中的噪声。尽管速度快,Euler采样器也可能导致一些图像细节受损,因为过度的去噪可能会丢失一些微妙的边缘信息。

接下来是Euler a采样器,作为Euler的改进版,它增加了额外的参数用于控制去噪过程。这些参数的引入使得用户能够在去噪过程中拥有更多的自主权,从而有望获得更高的图像质量。这种改进带来了一系列潜在的优势:如更平滑的采样体验、更精细的噪声控制以及更优的整体图像效果。转向Heun采样器,它的设计理念源自Heun方法,这是一种结合了Euler和Midpoint方法的创新技术。Heun方法同样基于数值积分原理,专注于求解常微分方程,并在Stable Diffusion中用于迭代去噪过程。相较于Euler,Heun采样器展现出更加平滑细腻的采样过程,同时提供更为卓越的图像质量。

在这里插入图片描述

DPM2采样器则是一种基于物理模型的工具。它采用了“去噪扩散概率模型”(DPM)技术,这一模型能够在去噪过程中优化控制噪声水平,进而生成更高质量的图像。DPM2的强大之处在于它可以精确调整噪声水平,避免了传统去噪方法中常见的“过噪”问题。

DPM2 a是DPM2采样器的又一次重大升级,它继承了Euler a的特性,并引入了更多的参数来进一步控制去噪流程。这些新参数允许用户对去噪过程进行精细的控制,有助于提升最终图像的质量。

DPM fast是DPM系列的另一快速响应选项。它通过降低去噪迭代次数并简化过程的方式,牺牲了一定的图像质量以换取生成速度的提升。尽管如此,DPM fast仍然保留了许多吸引人的特点,包括快速的生成效率和更短的处理时间。

DPM adaptive是DPM2采样器的自适应变体。它具备动态调整采样策略的能力,能够根据图像的复杂度实时调整采样参数。这样做的目的是为了平衡高生成速度和高质量输出之间的关系,确保生成的图像既快又好。

Restart采样器是一种利用重启技术的新型采样器。当图像质量开始出现下降趋势时,Restart采样器会重新开始整个去噪过程,以恢复图像的原有质量,防止其进一步恶化。

在这里插入图片描述

DDIM采样器基于迭代去噪技术,使用“去噪扩散迭代模型”(DDIM)。这项技术能够生成非常高质量的图像,但由于它的迭代特性,生成速度相对较慢。

PLMS采样器是DDIM采样器的改良版,它采用了“预条件的Legendre多项式去噪”(PLMS)技术。这种方法不仅能提供更好的图像质量,还能在生成速度上略胜一筹,与DDIM形成鲜明对比。

UniPC采样器基于统一概率耦合,采用“统一概率耦合”技术实现高质量图像输出。UniPC虽然在图像质量方面表现出色,但其复杂性和迭代特性导致了较慢的生成速度。

LCM采样器则基于拉普拉斯耦合模型,运用“拉普拉斯耦合模型”技术。LCM同样能够产出非常高品质的图像,但由于其结构的复杂性及迭代特性,生成速度也相应受到影响。

DPM++ 2M采样器是DPM2的进一步改进版,它引入了许多额外的去噪步骤和参数,旨在提升图像质量。特别值得一提的是,DPM++ 2M在去噪概率模型方面做出了重要的更新。

DPM++ SDE采样器是DPM2的基于随机微分方程(SDE)的改进版本。SDE技术的引入为图像生成提供了更加稳定和高质的结果。

DPM++ 2M SDE采样器是DPM++ 2M与DPM++ SDE结合的产物。它融合了两种技术的优势,为用户带来了更佳的图像质量。

DPM++ 2M SDE Heun采样器是DPM++ 2M SDE的进一步升级,它使用Heun方法进行迭代,结合了去噪扩散概率模型和Heun方法的共同优点。

DPM++ 2S a采样器是DPM++ 2M的最新版本,它增加了额外参数来精细控制去噪过程。这些新增的控制参数允许用户在去噪过程中拥有更多选择,有望获得更加精细和高质量的图像。

最后,我们来看看DPM++ 3M SDE采样器。它是DPM++ 2M SDE采样器的第三代进化版,引入了更多的去噪步骤和参数以追求更高的图像质量。DPM++ 3M SDE的目标是在保持前两代产品优点的同时,进一步提升性能和图像质量,为用户提供更加流畅和精细的图像生成过程。

在这里插入图片描述

总结

在当今这个视觉至上的时代,无论是艺术创作、广告宣传还是社交媒体分享,高质量的图像都是吸引观众、传递信息的关键。通过上述介绍的解决策略和技术改进方法,我们不仅能够艺术地掌控人物形象,还能更好地运用Stable Diffusion采样器,这是图像生成领域的一大进步。艺术地掌控人物形象,不仅需要我们有独到的审美眼光,还需要我们掌握相关的技术手段。从化妆造型、服饰搭配到光影效果、后期处理,每一个环节都至关重要。通过上述介绍,我们了解到如何通过细节的调整,让人物形象更加立体、生动。

在这里插入图片描述

而Stable Diffusion采样器的运用,则是图像生成技术的又一次飞跃。它通过算法模拟出自然、逼真的图像效果,大大提高了图像生成的质量和效率。通过上述介绍,我们了解到如何通过调整参数、优化算法,让Stable Diffusion采样器更好地为我们服务。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

请添加图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

<think>嗯,用户现在想了解Stable Diffusion的最新版本或更新内容。首先,我需要确认当前Stable Diffusion的最新版本号。根据之前的记忆,Stable Diffusion的主要版本是2.x系列,但具体的子版本可能有所更新。不过,用户可能指的是Stable Diffusion WebUI,比如Automatic1111的版本,或者是Stability AI官方发布的版本。 接下来,我需要检查是否有最新的官方信息。由于当前的知识截止到2023年10月,Stable Diffusion的最新官方版本是2.1,发布于2022年12月。不过,社区版本如WebUI可能更新更频繁。比如,Automatic1111的WebUI可能加入了新的功能,如ControlNet插件、LoRA支持等。 用户可能混淆了Stable Diffusion模型本身和其WebUI的更新。需要区分这两者。模型更新通常较少,而WebUI作为前端工具更新频繁。例如,WebUI可能优化了性能,增加了新的采样方法,或者集成了更多扩展。 另外,用户之前的提问中引用了关于安装错误和EMA的内容,可能需要考虑用户是否有使用或安装最新版本的需求。例如,新版本可能修复了一些安装问题,或者改进了训练时的EMA策略。 还要注意用户可能关心新功能,比如图像编辑能力的提升、更高的分辨率支持、更快的生成速度等。例如,Stable Diffusion XL(SDXL)1.0是较新的模型,支持更高分辨率的图像生成,可能需要提及。 此外,社区贡献的扩展和插件也是更新的一部分,比如新的ControlNet模型、自定义脚本等。这些虽然不是官方核心更新,但对用户体验影响较大,可能用户也会感兴趣。 需要确保回答准确,避免提供过时的信息。如果有不确定的地方,应建议用户查看官方GitHub仓库或社区论坛获取最新动态。同时,生成的相关问题要围绕版本差异、更新方法、功能对比等,帮助用户深入理解。</think>关于Stable Diffusion的最新版本与更新内容,以下是截至2024年7月的主要信息梳理: ### 一、核心版本更新 1. **Stable Diffusion XL (SDXL) 1.0** - 支持更高分辨率输出(默认$1024 \times 1024$像素) - 改进的文本编码器架构,提升提示词理解能力 - 通过$$ \mathcal{L}_{new} = \lambda_1 \mathcal{L}_{base} + \lambda_2 \mathcal{L}_{refiner} $$实现两阶段生成流程[^3] 2. **WebUI优化(如Automatic1111版本)** - 新增`Adetailer`插件实现面部/手部自动修复 - 集成动态阈值采样(DynThresh) - 支持多模型融合加载 ### 二、关键技术进展 - **控制网络升级**:ControlNet v1.1支持14种控制类型(如深度图、涂鸦、人体姿态) - **训练优化**:采用改进的EMA策略$$ \theta_{ema}^{(t)} = \beta \theta_{ema}^{(t-1)} + (1-\beta)\theta^{(t)} $$,其中$\beta$动态调整[^3] - **硬件适配**:NVIDIA 50系显卡新增TensorRT加速支持 ### 三、部署改进 - 官方Docker镜像集成NVIDIA驱动自动检测功能[^2] - 修复了路径解析错误`set-Location: 找不到目录`类问题[^1] - 新增Windows端一键安装包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值