数论
思路:对于 n ! n! n!我们可以O(logn)求出它尾部0的个数(get函数,具体看代码),由于 1 < = k < = 1 e 9 1<=k<=1e9 1<=k<=1e9,若单个枚举会T
考虑到我们的get函数随着n的增大,返回值也单调递增,
所以我们可以二分n,总复杂度 O(logn*logn)
Code:
#include<bits/stdc++.h>
#define int __int128
#define rep(i,a,n) for(int i=a; i<=n ;i++)
#define pii pair<int,int>
#define pb push_back
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
using namespace std;
inline int read(){
int x = 0, f = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){
if(ch == '-')
f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
inline void write(int x){
if(x < 0){
putchar('-');
x = -x;
}
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
}
int get(int x){//O(logn)求出n!后有几个0的数量
int cur=5, ans=0;
while(x>=cur){
ans+=x/cur;
cur*=5;
}
return ans;
}
void solve(){
int k;
k=read();
int l=1, r=5*1e9, ans;
while(l<=r){
int mid=(l+r)/2;
if(get(mid)<k) l=mid+1;
else r=mid-1, ans=mid;
}
write(ans);
cout<<'\n';
/*rep(i,1,25){
write(fac(i));
cout<<'\n';
}*/
}
signed main(){
//ios;
int t=1;
//cin>>t;
while(t--){
solve();
}
return 0;
}