Chapter 02:Opencv的五个基本功能

 随着本专栏的学习,你可以快速的掌握如何使用Opencv,请注意更多的学习内容还请看官方文档,本专栏是为了给对于视觉方向比较感兴趣的新手所写,带领它们做好一个基础的框架,让他们快速学会如何通过这个框架调取函数做自己感兴趣的项目,同时我也正在更新我的Opencv项目实战专栏,你可以搭配着一起学习。

订阅此专栏, (2条消息) Opencv项目实战_夏天是冰红茶的博客-优快云博客


MAIN

import cv2
import numpy as np

img = cv2.imread("Resources/lena.png")
kernel = np.ones((5,5),np.uint8)

imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny = cv2.Canny(img,150,200)
imgDilation = cv2.dilate(imgCanny,kernel,iterations=1)
imgEroded = cv2.erode(imgDilation,kernel,iterations=1)


cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.imshow("Dilation Image",imgDilation)
cv2.imshow("Eroded Image",imgEroded)
cv2.waitKey(0)

Grayscale Image

imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 将原来的RGB格式的图像转换为灰度空间,像素只有明暗程度。


Gaussian Blur

imgBlur = cv2.GaussianBlur(imgGray,(7,7),0)

 我们添加上高斯模糊,可以明显的发现它与灰度图像的区别,的确实较为模糊。


Canny Edge detection

imgCanny = cv2.Canny(img,150,200)

 canny检测在边缘检测当中,比起其他的检测效果要好些。


Image Dilation

imgDilation = cv2.dilate(imgCanny,kernel,iterations=1)

这是图像处理的膨胀,在对Canny检测后的图像修改下,它的边缘线条变粗


Eroded Image

imgEroded = cv2.erode(imgDilation,kernel,iterations=1)

 又在膨胀后的图片下,进行图像侵蚀。


相信你已经初步了解到了Opencv的五种基础功能,在我们的实战项目当中相当的常见,欢迎大家来我的社区里面,我们一起共同的学习。冰红茶社区-优快云社区云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天是冰红茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值