1.前向概率算法的实现
import numpy as np
O = [0,1,0]
Pi= np.array([0.2, 0.4,0.4])
A = np.array([
[0.5, 0.2,0.3],
[0.3, 0.5,0.2],
[0.2, 0.3,0.5]
])
B = np.array([
[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3],
])
class ForwardModel:
# 该类 需要传入参数Pi,A,B
def __init__(self,Pi,A,B) -> None:
self.Pi = Pi
self.A = A
self.B = B
self.T = len(A)
def predict(self,O): # 在类ForwardModel传入参数Pi,A,B的条件下,调用predict函数需要传入参数 O