#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
string in, level;
void preorder(int il, int ir, int ll, int lr)
{
int pos;
for (int i = ll; i <= lr; i++)
{
int flag = 0;
for (int j = il; j <= ir; j++)//找根结点
{
if (level[i] == in[j])
{
cout << in[j];
pos = j;
flag = 1;
break;
}
}
if (flag) break;
}
if (pos > il)preorder(il, pos - 1, ll, lr);// 遍历左子树
if (pos < ir) preorder(pos + 1, ir, ll, lr);// 遍历右子树
}
int main()
{
cin >> in >> level;
preorder(0, in.size() - 1, 0, level.size() - 1);//中序区间
return 0;
}
acwing y总代码
#include<iostream>
#include<cstring>
#include<string>
#include<unordered_map>
#include<queue>
using namespace std;
const int N = 40;
int n;
int postorder[N], inorder[N];
unordered_map <int, int> l, r, pos;//左儿子,右儿子,中序遍历中这一点的下标
int build(int il, int ir, int pl, int pr)//建树,返回的是根节点
{
int root = postorder[pr];
int k=pos[root];//k是中序遍历的下标
if (il < k)l[root] = build(il, k - 1, pl, k - 1 - il + pl);
if (ir > k)r[root] = build(k + 1, ir, k - 1 - il + pl + 1, pr - 1);
return root;
}
void bfs(int root)
{
queue<int>q;
q.push(root);
while (q.size())
{
auto t = q.front();
q.pop();
cout << t << ' ';
if (l.count(t))q.push(l[t]);//左子树存在
if (r.count(t))q.push(r[t]);//右子树存在
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
cin >> postorder[i];
for (int i = 0; i < n; i++)
{
cin >> inorder[i];
pos[inorder[i]] = i;
}
int root = build(0, n - 1, 0, n - 1);//当前结点的中序遍历区间和后序遍历区间
bfs(root);
return 0;
}
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 40;
int l[N],r[N]; //l[i],r[i]代表i号节点的左右儿子
int post[N], pre[N]; //后续遍历和前序遍历的序列
bool is_only = true; //全局变量,是否为唯一二叉树的标志
int in[N], cnt = 0;
//根据pre[l1,r1], post[l2,r2]创建二叉树节点,并分配左右儿子指针
int build(int l1, int r1, int l2, int r2)
{
int root = pre[l1];
if(l1 == r1) return root;
//根据pre[l1+1] 和 post[r2-1]来判断答案是否为1
if(pre[l1+1] == post[r2-1]) //说明答案不唯一,我们直接认为右儿子不存在即可
l[root] = build(l1+1, r1, l2, r2-1), is_only = false;
else //不相同,那么说明 pre[l1+1]为左儿子的根节点, post[r2-1]为右儿子根节点
{
int lpre, rpost; //lpre代表前序序列中左子树的右边界,rpost代表后序序列中右子树的左边界
for(lpre = l1+1;lpre<=r1;lpre++) if(pre[lpre] == post[r2-1]) break;
for(rpost = r2-1;rpost>=l2;rpost--) if(post[rpost] == pre[l1+1]) break;
lpre--, rpost++;
l[root] = build(l1+1, lpre, l2, rpost-1);
r[root] = build(lpre+1, r1, rpost, r2-1);
}
return root;
}
//中序遍历
void inorder(int root)
{
if(l[root] != -1) inorder(l[root]);
in[cnt++] = root;
if(r[root] != -1) inorder(r[root]);
}
int main()
{
//用-1来来代表儿子节点为空
memset(l,-1,sizeof(l));
memset(r,-1,sizeof(r));
int n;
cin >> n;
for(int i=0;i<n;i++)
cin >> pre[i];
for(int i=0;i<n;i++)
cin >> post[i];
//根据前序遍历和后序遍历创建二叉树
int root = build(0,n-1,0,n-1);
if(is_only) puts("Yes");
else puts("No");
inorder(root);
cout << in[0];
for(int i=1;i<n;i++)
cout << " " <<in[i];
}
作者:SmallK
链接:https://www.acwing.com/solution/content/14292/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
https://vjudge.net/contest/492108#problem/A
大佬原文:https://blog.youkuaiyun.com/laojiu_/article/details/51527152
我只是保存一下
#include<iostream>
#include<algorithm>
using namespace std;
//前序和中序得到后序
struct Node
{
int data;
Node* pLeft;
Node* pRight;
Node(int _data):data(_data),pLeft(NULL),pRight(NULL)
{}
};
Node* root;
int N;
int a[1005];//前序
int b[1005];//中序
Node* create(int t1, int t2, int num)
{
Node* p = nullptr;
for (int i = 0; i < num; i++)
{
if (a[t1] == b[t2 + i])
{
p = new Node(a[t1]);
p->pLeft = create(t1 + 1, t2, i);
p->pRight = create(t1 + i + 1, t2 + i + 1, num - i - 1);//num - i - 1下标从零开始,所以减一
return p;
}
}
return p;
}
void postOrder(Node* p)
{
if (p == nullptr)
return;
else
{
postOrder(p->pLeft);
postOrder(p->pRight);
if (p == root)
printf("%d\n", p->data);
else
printf("%d ", p->data);
}
}
int main()
{
while (~scanf("%d", &N))
{
for (int i = 0; i < N; i++)
scanf("%d", &a[i]);//前序
for (int i = 0; i < N; i++)
scanf("%d", &b[i]);//中序
root = create(0, 0, N);//前序区间,个数
postOrder(root);
}
return 0;
}