【十五】利用GPU训练

  【声明】来源b站视频小土堆PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili

GPU训练有两种方式

方式1

1 mymodel = MyModel()
mymodel = mymodel.cuda()
2 #损失函数
 loss_fun = nn.CrossEntropyLoss()
loss_fun = loss_fun.cuda()
3  imgs,targets = data
   
imgs = imgs.cuda()
targets = targets.cuda()

方式2

.to(device)

device = torch.device("cpu")

device = torch.device("cuda")
#如果有多个显卡

device = torch.device("cuda:0")

device = torch.device("cuda:1")

代码方式1

import torch
import torch.nn as nn

import torchvision

from torch.utils.data import DataLoader
# from model import *
import time

#准备数据集


train_data  = torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),
                                           download=False)

test_data = torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=False)

#length长度
train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为{}".format(train_data_size))
print("测试数据集的长度为{}".format(test_data_size))

#利用dataloader来加载数据集
train_dataloder = DataLoader(dataset=train_data,batch_size=64)
test_dataloader = DataLoader(dataset=test_data,batch_size=64)

#搭建神经网络
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, input):
        input = self.model(input)
        return input

mymodel = Model()

mymodel = mymodel.cuda()

#损失函数
loss_fun = nn.CrossEntropyLoss()
loss_fun = loss_fun.cuda()
#优化器
optim = torch.optim.SGD(mymodel.parameters(),lr=0.01)

#设置训练网络的一些参数
total_strain_step = 0#训练次数
total_test_step = 0#测试次数
epoch = 10#训练轮数
start_time = time.time()                    # 开始训练的时间
for i in range(epoch):
    print("——————第{}轮训练开始——————".format(i+1))
    #训练
    for data in train_dataloder:
        imgs,targets = data
        imgs = imgs.cuda()
        targets = targets.cuda()
        outputs = mymodel(imgs)
        loss = loss_fun(outputs,targets)#计算损失
        #优化器优化模型
        optim.zero_grad()#梯度清零
        loss.backward() #损失后向传播
        optim.step() #更新网络参数

        total_strain_step = total_strain_step + 1
        if total_strain_step % 100 ==00:
            end_time = time.time()  # 训练结束时间
            print("训练时间: {}".format(end_time - start_time))
            print("训练次数:{},Loss:{}".format(total_strain_step, loss.item()))
    #测试
    total_test_loss = 0
    total_accuracy = 0#整体正确率
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets  = data
            targets = targets.cuda()
            imgs = imgs.cuda()
            outputs = mymodel(imgs)
            loss = loss_fun(outputs,targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss{}".format(total_test_loss))
    print("整体测试集上的正确率{}".format(total_accuracy/test_data_size))


    torch.save(mymodel,"./data/mymodel_train{}.pth".format(i))
    print("模型已保存")







代码方式2

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值