【声明】来源b站视频小土堆PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili
GPU训练有两种方式
方式1
1 mymodel = MyModel()
mymodel = mymodel.cuda()
2 #损失函数 loss_fun = nn.CrossEntropyLoss()
loss_fun = loss_fun.cuda()
3 imgs,targets = data
imgs = imgs.cuda()
targets = targets.cuda()
方式2
.to(device)
device = torch.device("cpu")
device = torch.device("cuda")
#如果有多个显卡
device = torch.device("cuda:0")
device = torch.device("cuda:1")
代码方式1
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
# from model import *
import time
#准备数据集
train_data = torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),
download=False)
test_data = torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),
download=False)
#length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为{}".format(train_data_size))
print("测试数据集的长度为{}".format(test_data_size))
#利用dataloader来加载数据集
train_dataloder = DataLoader(dataset=train_data,batch_size=64)
test_dataloader = DataLoader(dataset=test_data,batch_size=64)
#搭建神经网络
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, input):
input = self.model(input)
return input
mymodel = Model()
mymodel = mymodel.cuda()
#损失函数
loss_fun = nn.CrossEntropyLoss()
loss_fun = loss_fun.cuda()
#优化器
optim = torch.optim.SGD(mymodel.parameters(),lr=0.01)
#设置训练网络的一些参数
total_strain_step = 0#训练次数
total_test_step = 0#测试次数
epoch = 10#训练轮数
start_time = time.time() # 开始训练的时间
for i in range(epoch):
print("——————第{}轮训练开始——————".format(i+1))
#训练
for data in train_dataloder:
imgs,targets = data
imgs = imgs.cuda()
targets = targets.cuda()
outputs = mymodel(imgs)
loss = loss_fun(outputs,targets)#计算损失
#优化器优化模型
optim.zero_grad()#梯度清零
loss.backward() #损失后向传播
optim.step() #更新网络参数
total_strain_step = total_strain_step + 1
if total_strain_step % 100 ==00:
end_time = time.time() # 训练结束时间
print("训练时间: {}".format(end_time - start_time))
print("训练次数:{},Loss:{}".format(total_strain_step, loss.item()))
#测试
total_test_loss = 0
total_accuracy = 0#整体正确率
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
targets = targets.cuda()
imgs = imgs.cuda()
outputs = mymodel(imgs)
loss = loss_fun(outputs,targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss{}".format(total_test_loss))
print("整体测试集上的正确率{}".format(total_accuracy/test_data_size))
torch.save(mymodel,"./data/mymodel_train{}.pth".format(i))
print("模型已保存")
代码方式2