38.利用matlab解 有约束无约束的参数估计对比(matlab程序)

1.简述

      

1.离散型随机变量的极大似然估计法:
(1) 似然函数
若X为离散型, 似然函数为

(2) 求似然函数L(θ)的最大值点 θ, 则θ就是未知参数的极大似然估计值.
2.连续型随机变量的极大似然估计法:
(1) 似然函数
若 X 为连续型, 似然函数为

(2) 求似然函数L(θ)的最大值点θ, 则θ就是未知参数 的极大似然估计值.

一、矩估计
设总体X的均值、方差均存在,样本(X1,X2,……,X n),则不管总体服从什么分布,总体均值的矩估计均为样本均值,方差的矩估计均为样本二阶中心矩。
matlab中提供了下列函数来实现总体均值的矩估计值与方差的矩估计值的计算,如下:
mu_ju=mean(X) % 返回样本X的均值
sigma2_ju =moment(X,2) % 返回样本X的2阶中心矩
例:来自某总体X的样本值如下:
232.50, 232.48, 232.15, 232.52, 232.53, 232.30, 232.48, 232.05, 232.45, 232.60, 232.47, 232.30,求X的均值与方差的矩估计。

>> x=[232.50,232.48,232.15,232.52,232.53,232.30,232.48,232.05,232.45,232.60,232.47,232.30]
 mu_ju=mean(x)
sigma2_ju= moment(x,2)
x =
  232.5000  232.4800  232.1500  232.5200  232.5300  232.3000  232.4800  232.0500  232.4500  232.6000  232.4700  232.3000
mu_ju =
  232.4025
sigma2_ju =
    0.0255

二、单个总体极大似然估计与区间估计(参数均未知)
命令: [a,b]=namefit (X, ALPHA) % 返回总体参数的极大似然估计a与置信

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值