1.简述
一、小波处理信号的一般过程
1)取样:这是一个预处理步骤。若信号连续,那么必须以能够捕获原信号必要细节的速率取样。不同的应用决定了不同的取样率。如:原信号的细节频率为20kHz,由Nyquist采样定理,此时的取样率至少应为细节频率的两倍,即40kHz,才能保证细节频率不失真。
2)分解:信号取样后,选择一个最高级近似系数f j ∈ v,以便能最佳的逼近f ff。之后,通过多分辨率分解算法,将信号进行逐级分解。该步骤的输出是各级别的小波系数(细节系数)和最低级别(或自定义的合适级别)的近似系数。该系数集就是下一步信号处理中要处理的对象。
3)信号处理:通过舍弃非显著系数可以压缩信号,或者以某种方式使信号滤波或去噪。该步骤的输出是修改过的系数集(细节系数集),可被存储或立即重构以重组经过处理的信号。但在某些情况下,原信号不再有用,可以舍弃,如:奇异性检测。
4)重构:把经过信号处理步骤修改过的系数集(细节系数集),应用多分辨率重构算法,进行逐级重构,该步骤输出最高级近似系数。
二、分解算法
1. 分解迭代
首先,基于取样率和进行什么样的多分辨率分析确定f ff的近似空间,其能最佳的反映f ff的各种信息。之后选择 ,以便能最佳的逼近f 。
三、重构算法