1.环境配置:
按照前述方法创建虚拟机,选择Cuda11.7-conda,其他按需选择:
之后输入下述命令,面向GPU的环境安装:
conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 注意:一定要先 cd /root
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf
输入下述命令进行数据集的解压:
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
输入下述命令,列出所有跟 InternLM 及 C-Eval 相关的配置,结果如下图所示:
2.启动评测
打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py
,贴入以下代码:
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出:
#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
进行命令解析:
python run.py
--datasets ceval_gen \ # 数据集准备
--models hf_internlm2_chat_1_8b \ # 模型准备
--debug
一切正常将会看到:
[2024-08-25 19:50:09,010] [opencompass.openicl.icl_inferencer.icl_gen_inferencer] [INFO] Starting inference process...
测评完成后将会依次看到:
以及
然后使用配置文件修改参数法进行测评:
cd /root/opencompass/configs
touch eval_tutorial_demo.py
打开eval_tutorial_demo.py贴如如下代码:
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_gen import ceval_datasets
from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models
datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models
运行任务时,我们只需将配置文件的路径传递给 run.py:
cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug
测评完成后将依次看到:
以及
完成!!!