1.创建虚拟机,按需创建:
2.环境调用:
神经网络训练与调用一般需要在特定环境或经过一系列库的安装满足神经网络的环境要求,而我们可以调用已有的环境:
使用:conda activate /root/share/pre_envs/icamp3_demo
调用在/root/share/pre_envs
中配置好了预置环境 icamp3_demo。
3.Cli Demo部署 InternLM2-Chat-1.8B模型
首先在指定目录创建cli_demo.py存放我们的代码:
mkdir -p /root/demo touch /root/demo/cli_demo.py
然后将下述代码复制到刚刚创建的cli_demo.py文件中:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
保存,我们可以使用python /root/demo/cli_demo.py调用Demo,效果如下图所示,下图中首先让模型进行自我介绍以及小故事生成:
4.Streamlit Web Demo 部署 InternLM2-Chat-1.8B 模型
首先使用下述代码将本教程仓库clone到本地:
cd /root/demo
git clone https://github.com/InternLM/Tutorial.git
然后,我们执行如下代码来启动一个Streamlit服务:
cd /root/demo
streamlit run /root/demo/Tutorial/tools/streamlit_demo.py --server.address 127.0.0.1 --server.port 6006
接下来在本地PowerShell中输入以下命令,将端口映射到本地:
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号
在完成端口映射后,我们便可以通过浏览器访问 http://localhost:6006
来启动我们的 Demo,效果如下图所示:
教程中还讲明如果遇到:OSError: [Errno 28] inotify watch limit reached,可以稍等一段时间重新执行,但是我没有遇到这个问题。