决策树原理实现

决策树学习算法包括三部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、C4.5和CART。

特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:

(1)特征 A A A对训练数据集 D D D的信息增益(ID3)

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D|A) g(D,A)=H(D)H(DA)

其中, H ( D ) = − ∑ k = 1 K ∣ C k ∣ ∣ D ∣ log ⁡ 2 ∣ C k ∣ ∣ D ∣ H(D)=-\sum_{k=1}^{K} \frac{\left|C_{k}\right|}{|D|} \log _{2} \frac{\left|C_{k}\right|}{|D|} H(D)=k=1KDCklog2DCk

H ( D ∣ A ) = ∑ i = 1 n ∣ D i ∣ ∣ D ∣ H ( D i ) H(D | A)=\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} H\left(D_{i}\right) H(DA)=i=1nDDiH(Di)

H ( D ) H(D) H(D)是数据集 D D D的熵, H ( D i ) H(D_i) H(Di)是数据集 D i D_i Di的熵, H ( D ∣ A ) H(D|A) H(DA)是数据集 D D D对特征 A A A的条件熵。 D i D_i Di D D D中特征 A A A取第 i i i个值的样本子集, C k C_k Ck D D D中属于第 k k k类的样本子集。 n n n是特征 A A A取值的个数, K K K是类的个数。

(2)特征 A A A对训练数据集 D D D的信息增益比(C4.5)

g R ( D , A ) = g ( D , A ) H A ( D ) g_{R}(D, A)=\frac{g(D, A)}{H_{A}(D)} gR(D,A)=HA(D)g(D,A)
其中, H A ( D ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ {H_{A}(D)}=-\sum_{i=1}^{n}\frac{|D_{i}|}{|D|}\log_{2}\frac{|D_{i}|}{|D|} HA(D)=i=1nDDilog2DDi

g ( D , A ) g(D,A) g(D,A)是信息增益, H A ( D ) H_{A}(D) HA(D)是训练数据集 D D D关于特征A的值的熵, n n n是特征 A A A取值的个数。

(3)样本集合 D D D的基尼指数(CART)

Gini ⁡ ( D ) = 1 − ∑ k = 1 K ( ∣ C k ∣ ∣ D ∣ ) 2 \operatorname{Gini}(D)=1-\sum_{k=1}^{K}\left(\frac{\left|C_{k}\right|}{|D|}\right)^{2} Gini(D)=1k=1K(DCk)2

特征 A A A条件下集合 D D D的基尼指数:

Gini ⁡ ( D , A ) = ∣ D 1 ∣ ∣ D ∣ Gini ⁡ ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ Gini ⁡ ( D 2 ) \operatorname{Gini}(D, A)=\frac{\left|D_{1}\right|}{|D|} \operatorname{Gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{|D|} \operatorname{Gini}\left(D_{2}\right) Gini(D,A)=DD1Gini(D1)+DD2Gini(D2)

决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则,不断地选取局部最优的特征。

决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint

书上题目5.1

# 获取数据
def create_data():
    datasets = [
        ['青年', '否', '否', '一般', '否'],
        ['青年', '否', '否', '好', '否'],
        ['青年', '是', '否', '好', '是'],
        ['青年', '是', '是', '一般', '是'],
        ['青年', '否', '否', '一般', '否'],
        ['中年', '否', '否', '一般', '否'],
        ['中年', '否', '否', '好', '否'],
        ['中年', '是', '是', '好', '是'],
        ['中年', '否', '是', '非常好', '是'],
        ['中年', '否', '是', '非常好', '是'],
        ['老年', '否', '是', '非常好', '是'],
        ['老年', '否', '是', '好', '是'],
        ['老年', '是', '否', '好', '是'],
        ['老年', '是', '否', '非常好', '是'],
        ['老年', '否', '否', '一般', '否'],
    ]
    colunms = ['年龄', '有工作', '有自己的房子', '信贷情况', '类别']
    # 返回数据集和每个维度的名称
    return datasets, colunms


datasets, colunms = create_data()
train_data = pd.DataFrame(data=datasets, columns=colunms)
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
    return ent
# def entropy(y):
#     """
#     Entropy of a label sequence
#     """
#     hist = np.bincount(y)
#     ps = hist / np.sum(hist)
#     return -np.sum([p * np.log2(p) for p in ps if p > 0])


# 经验条件熵
def cond_ent(datasets, axis=0):  # axis表示选第几个特征,默认为0
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p) / data_length) * calc_ent(p)
                    for p in feature_sets.values()])
    return cond_ent

# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent


def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    # ent = entropy(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(colunms[c], c_info_gain))
    # 比较大小,key=lambda x: x[-1] 提取每个元组的最后一个元素(即信息增益的数值)作为比较关键字
    best_ = max(best_feature, key=lambda x: x[-1])
    # print(best_) # (2, 0.4199730940219749)
    return '特征({})的信息增益最大,选择为根节点特征'.format(colunms[best_[0]])
info_gain_train(np.array(datasets))
特征(年龄) - info_gain - 0.083
特征(有工作) - info_gain - 0.324
特征(有自己的房子) - info_gain - 0.420
特征(信贷情况) - info_gain - 0.363

'特征(有自己的房子)的信息增益最大,选择为根节点特征'

利用上述训练数据集使用ID3算法生成决策树,例5.3

# 定义节点类 二叉树
class Node:
    def __init__(self,root=True,label=None,feature_name=None,feature=None):
        self.root=root
        self.label=label
        self.feature_name=feature_name
        self.feature=feature
        self.tree={}
        self.result={
            'label:':self.label,
            'feature':self.feature,
            'tree':self.tree
        }
        
    def __repr__(self):
        return '{}'.format(self.result)
    
    def add_node(self,val,node):
        self.tree[val]=node
        
    def predict(self,features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)
    
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                        for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :
                                               -1], train_data.iloc[:,
                                                                    -1], train_data.columns[:
                                                                                            -1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(
            root=False, feature_name=max_feature_name, feature=max_feature)
        # 获取特征列中的所有不同值
        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                          f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
datasets, colunms = create_data()
data_df = pd.DataFrame(datasets, columns=colunms)
dt = DTree()
tree = dt.fit(data_df)
tree
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])
'否'

使用sklearn

from sklearn.tree import DecisionTreeClassifier,export_graphviz
from IPython.display import Image
import graphviz
import pydotplus

iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = [
    'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
]
data = np.array(df.iloc[:100, [0, 1, -1]])
# print(data)

X, y = data[:, :-1], data[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

clf = DecisionTreeClassifier()
clf.fit(
    X_train,
    y_train,
)
print(clf.score(X_test, y_test))

# 导出决策树为DOT格式
dot_data = export_graphviz(
    clf,
    out_file=None,
    feature_names=['sepal length', 'sepal width'],
    class_names=iris.target_names,
    filled=True,  # 用于控制节点是否填充颜色
    rounded=True,  # 控制节点的形状是否是圆角矩形
    special_characters=True  # 用于控制是否使用特殊字符(例如Unicode字符)来显示更复杂的特征名称或类别名称
)

# 使用pydotplus将DOT文件转换为图像
graph = pydotplus.graph_from_dot_data(dot_data)

# 保存为PDF文件
# graph.write_pdf("mytree.pdf")

# 保存为PNG文件
# graph.write_png("mytree.png")

Image(graph.create_png())
0.8333333333333334

在这里插入图片描述
参考文章:
https://github.com/fengdu78/lihang-code
(1) 决策树案例:泰坦尼克号幸存者的预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值