Educoder 机器学习之随机森林算法 第2关:随机森林算法流程

第2关:随机森林算法流程

任务描述

本关任务:补充 python 代码,完成 RandomForestClassifier 类中的 fit 和 predict 函数。请不要修改 Begin-End 段之外的代码。

相关知识

为了完成本关任务,你需要掌握随机森林的训练与预测流程

随机森林的训练流程

随机森林是 Bagging 的一种扩展变体,随机森林的训练过程相对与 Bagging 的训练过程的改变有:

  • 基学习器: Bagging 的基学习器可以是任意学习器,而随机森林则是以决策树作为基学习器
  • 随机属性选择:假设原始训练数据集有 10 个特征,从这 10 个特征中随机选取 k 个特征构成训练数据子集,然后将这个子集作为训练集扔给决策树去训练。其中 k 的取值一般为 log2(特征数量) 。

这样的改动通常会使得随机森林具有更加强的泛化性,因为每一棵决策树的训练数据集是随机的,而且训练数据集中的特征也是随机抽取的。如果每一棵决策树模型的差异比较大,那么就很容易能够解决决策树容易过拟合的问题。

随机森林训练过程伪代码如下:

 
  1. #假设数据集为D,标签集为A,需要构造的决策树为tree
  2. def fit(D, A):
  3. models = []
  4. for i in range(决策树的数量):
  5. 有放回的随机采样数据,得到数据集sample_D和标签sample_A
  6. 从采样到的数据中随机抽取K个特征构成训练集sub_D
  7. 构建决策树tree
  8. tree.fit(sub_D, sample_A)
  9. models.append(tree)
  10. return models

随机森林的预测流程

随机森林的预测流程与 Bagging 的预测流程基本一致,如果是回归,就将结果基学习器的预测结果全部加起来算平均;如果是分类,就投票,票数最多的结果作为最终结果。但需要注意的是,在预测时所用到的特征必须与训练模型时所用到的特征保持一致。例如,第 3 棵决策树在训练时用到了训练集的第 2,5,8 这 3 个特征。那么在预测时也要用第 2,5,8 这 3 个特征所组成的测试集传给第 3 棵决策树进行预测。

编程要求

在 begin-end 中完成 RandomForestClassifier 类中的 fit 和 predict 函数。分类器可使用 sklearn 提供的 DecisionTreeClassifier ,要求模型保存在 self.models 中。

fit 函数用于随机森林的训练过程,其中:

  • feature :训练集数据,类型为 ndarray;

  • label :训练集标签,类型为 ndarray。

    predict 函数,实现预测功能,并将标签返回,其中:

  • feature :测试集数据,类型为 ndarray 。(PS:feature中有多条数据)

测试说明

只需完成 fit 与 predict 函数即可,程序内部会调用您所完成的 fit 函数构建模型并调用 predict 函数来对数据进行预测。预测的准确率高于 0.9 视为过关。


开始你的任务吧,祝你成功!

import numpy as np
from collections import  Counter
from sklearn.tree import DecisionTreeClassifier
class RandomForestClassifier():
    def __init__(self, n_model=10):
        '''
        初始化函数
        '''
        #分类器的数量,默认为10
        self.n_model = n_model
        #用于保存模型的列表,训练好分类器后将对象append进去即可
        self.models = []
        #用于保存决策树训练时随机选取的列的索引
        self.col_indexs = []
    def fit(self, feature, label):
        '''
        训练模型
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: None
        '''
        #************* Begin ************#
        for i in range(self.n_model):
            m = len(feature)
            index = np.random.choice(m, m)
            col_index = np.random.permutation(len(feature[0]))[:int(np.log2(len(feature[0])))]
            sample_data = feature[index]
            sample_data = sample_data[:, col_index]
            sample_lable = label[index]
            model = DecisionTreeClassifier()
            model = model.fit(sample_data, sample_lable)
            self.models.append(model)
            self.col_indexs.append(col_index)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:训练数据集所有特征组成的ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        vote = []
        for i, model in enumerate(self.models):
            f = feature[:, self.col_indexs[i]]
            r = model.predict(f)
            vote.append(r)
        vote = np.array(vote)
        for i in range(len(feature)):
            v = sorted(Counter(vote[:, i]).items(), key=lambda x: x[1], reverse=True)
            result.append(v[0][0])
        return np.array(result)
        #************* End **************#

### 下载 Popper.min.js 文件的方法 对于希望获取 `popper.min.js` 的开发者来说,可以通过多种方式来实现这一目标。通常情况下,推荐通过官方渠道或可靠的分发网络 (CDN) 来获得最新的稳定版文件。 #### 使用 CDN 获取 Popper.min.js 最简单的方式之一是从流行的 CDN 中加载所需的 JavaScript 库。这不仅简化了集成过程,还可能提高性能,因为许多用户已经缓存了来自这些服务提供商的内容。例如: ```html <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2/dist/umd/popper.min.js"></script> ``` 这种方式不需要手动下载文件到本地服务器;只需将上述 `<script>` 标签添加至 HTML 文档中的适当位置即可立即使用 Popper 功能[^1]。 #### 从 npm 或 yarn 安装 如果项目采用模块化构建工具链,则可以直接利用包管理器如 npm 或 Yarn 进行安装。命令如下所示: ```bash npm install @popperjs/core # 或者 yarn add @popperjs/core ``` 之后可以根据具体需求引入特定功能模块,而不是整个库,从而减少打包后的体积并优化加载速度[^2]。 #### 访问 GitHub 发布页面下载压缩包 另一种方法是访问 Popper.js 的 [GitHub Releases](https://github.com/popperjs/popper-core/releases) 页面,在这里可以选择不同版本的 tarball 或 zip 归档进行下载解压操作。这种方法适合那些偏好离线工作环境或是想要定制编译选项的人群[^3]。 #### 手动克隆仓库 最后一种较为少见但也可行的办法便是直接克隆完整的 Git 存储库副本。这样可以获得开发分支以及历史记录等更多信息,适用于贡献代码或者深入学习内部机制的情况。 ```bash git clone https://github.com/popperjs/popper-core.git cd popper-core ``` 完成以上任一途径后便能成功取得所需版本的 Popper.min.js 文件,并将其应用于个人项目之中[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值