import pandas as pd # 指定文件的完整路径 file_path = r'C:\TELCEL_MEXICO_BOT\A\cell.txt' #使用pd.read_csv读取数据,并以\t进行分隔,head=0指从0行开始读取数据. ## 如果没有标题行的,可以再指定一个标题行的列名names=[‘a','b'],比如Data1 = pd.read_csv(file_path,header=None,sep='\t',names=[‘a','b']), 这样写就会自己定义两个标题行a,b Data = pd.read_csv(file_path,header=0,sep='\t') #查看前几行数据 print(Data.head()) #查看数据的形状,返回(行数,列数) print(Data.shape) #查看列名列表 print(Data.columns) #查看索引列 print(Data.index) #查看每列的数据类型 print(Data.dtypes)
打印结果如下:
C:\Users\eweidog\AppData\Local\Programs\Python\Python310\python.exe C:\TELCEL_MEXICO_BOT\OUTPUT\Pandas_Learning.py
NodeId RncFunctionId UtranCellId ... uarfcnDl uarfcnUl ENM
0 TPRNC4 1 6003A2 ... 10737 9787 enm1
1 TPRNC4 1 6003A4 ... 3088 2863 enm1
2 TPRNC4 1 6003B4 ... 3088 2863 enm1
3 TPRNC4 1 6004A1 ... 10712 9762 enm1
4 TPRNC4 1 6003A1 ... 10712 9762 enm1
[5 rows x 12 columns]
(13766, 12)
Index(['NodeId', 'RncFunctionId', 'UtranCellId', 'administrativeState',
'localCellId', 'operationalState', 'primaryCpichPower',
'primaryScramblingCode', 'sib1PlmnScopeValueTag', 'uarfcnDl',
'uarfcnUl', 'ENM'],
dtype='object')
RangeIndex(start=0, stop=13766, step=1)
NodeId object
RncFunctionId int64
UtranCellId object
administrativeState object
localCellId int64
operationalState object
primaryCpichPower int64
primaryScramblingCode int64
sib1PlmnScopeValueTag int64
uarfcnDl int64
uarfcnUl int64
ENM object
dtype: object
Process finished with exit code 0