数学建模遗传算法

遗传算法

简介

遗传算法(GA),是一种元启发式自然选择的过程,属于进化算法(EA)大类。遗传算法通常是利用生物启发算子,如变异、交叉和选择来生成高质量的优化和搜索问题的解决方案。

遗传算法借鉴了生物进化理论,将问题模拟成一个生物进化的过程,通过遗传、交叉、突变、自然选择等操作产生下一代的解,并逐步淘汰适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

遗传算法本质上是一种搜索算法,搜索算法的共同特征为:

1.首先组成一组候选解

2.依据某些适应性条件测算这些解的适应度

3.根据适应度保留某些候选解,放弃其它候选解

4.对保留的候选解进行某些操作,生成新的候选解

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。

交叉前:

00000|011100000000|10000

11100|000001111110|00101

交叉后:

00000|000001111110|10000

11100|011100000000|00101

染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。

变异前:

000001110000000010000

变异后:

000001110000100010000

适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

遗传算法伪代码

/*

  • Pc:交叉发生的概率

  • Pm:变异发生的概率

  • M:种群规模

  • G:终止进化的代数

  • Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程

*/

初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop

do

{

  计算种群Pop中每一个体的适应度F(i)。

  初始化空种群newPop

  do

  {

    根据适应度以比例选择算法从种群Pop中选出2个个体

    if ( random ( 0 , 1 ) < Pc )

    {

      对2个个体按交叉概率Pc执行交叉操作

    }

    if ( random ( 0 , 1 ) < Pm )

    {

      对2个个体按变异概率Pm执行变异操作

    }

将2个新个体加入种群newPop中

} until ( M个子代被创建 )

用newPop取代Pop

}until (任何染色体得分超过Tf, 或繁殖代数超过G)

遗传算法优化

(1)精英主义选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可将每一代中的最优解原封不动地复制到下一代中。

(2)插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体的某个随机片段移位到另一个随机的位置。

数学建模是将实际问题抽象化为数学模型,并利用数学方法解决问题的过程。而遗传算法是一种模拟自然生物进化过程的优化算法。在Python中,可以利用遗传算法来进行数学建模。 首先,我们需要定义数学建模问题的目标函数。例如,如果我们要优化一个函数的取值,可以将该函数作为目标函数。然后,我们需要定义问题的约束条件,例如变量的取值范围、条件限制等。 接下来,我们可以使用遗传算法进行优化。首先,我们需要初始化一组个体,每个个体代表了问题的一种解决方案。然后,通过交叉、变异等操作对个体进行演化,产生新的一代个体。根据目标函数的取值,我们可以选择适应度函数来评估每个个体的适应程度。适应度越高的个体,被选中的概率就越大。 通过多代的进化,遗传算法可以找到近似最优解。在Python中,可以使用遗传算法的库,如deap来实现算法的具体细节。使用deap库,可以方便地定义目标函数、约束条件和适应度函数,并进行演化过程。同时,deap还提供了丰富的遗传算法操作,如交叉、变异等。 综上所述,数学建模遗传算法Python可以通过定义目标函数、约束条件和适应度函数,使用遗传算法库如deap来实现优化过程。这种方法可以帮助解决各种实际问题,如优化参数、组合最优等。在实际应用中,我们可以根据具体问题的需求进行调整和优化,以获得更好的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值